cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-56 of 56 results.

A385562 Numbers m such that (1/m) * Sum_{k=1..m} k/phi(k) sets a record value, where phi is the Euler totient function (A000010).

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 22, 24, 30, 42, 60, 66, 72, 78, 84, 90, 114, 120, 150, 156, 180, 198, 210, 300, 330, 390, 420, 510, 546, 570, 600, 630, 750, 780, 840, 966, 990, 1122, 1170, 1200, 1260, 1410, 1470, 1560, 1596, 1620, 1650, 1680, 1806, 1830, 1890, 1980, 2100
Offset: 1

Views

Author

Amiram Eldar, Jul 03 2025

Keywords

Comments

Limit_{m->oo} (1/m) * Sum_{k=1..m} k/phi(k) = zeta(2)*zeta(3)/zeta(6) (A082695) (Sitaramachandrarao, 1985; Sándor et al., 2005). This sequence is infinite if this mean converges to the limit only from below.

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 29.

Crossrefs

Programs

  • Mathematica
    seq[lim_] := Module[{s = {}, sum = 0, rm = 0, r}, Do[sum += k/EulerPhi[k]; r = sum/k; If[r > rm, rm = r; AppendTo[s, k]], {k, 1, lim}]; s]; seq[2500]
  • PARI
    list(lim) = {my(sm = 0, rm = 0, r); for(k = 1, lim, sm += k/eulerphi(k); r = sm/k; if(r > rm, rm = r; print1(k, ", ")));}

A082696 Continued fraction expansion of Product_{p prime} (1+1/(p*(p-1))).

Original entry on oeis.org

1, 1, 16, 1, 2, 1, 2, 3, 1, 1, 3, 2, 1, 8, 1, 1, 1, 1, 1, 1, 1, 32, 33, 2, 14, 1, 1, 1, 1, 1, 6, 2, 1, 3, 1, 3, 5, 3, 2, 13, 21, 1, 1, 1, 1, 8, 3, 27, 1, 2, 5, 1, 6, 2, 4, 3, 1, 1, 3, 10, 3, 5, 12, 48, 1, 2, 2, 1, 1, 1, 2, 2, 1, 11, 1, 1, 3, 7, 1, 30, 42, 1, 1, 1, 12, 1, 7, 1, 41, 1, 1, 1, 3, 5, 2, 1, 2, 7
Offset: 0

Views

Author

Benoit Cloitre, Apr 12 2003

Keywords

Crossrefs

Cf. A014197, A070243, A082695 (decimal expansion).

Programs

  • PARI
    contfrac(prodeulerrat(1+1/(p*(p-1)))) \\ Amiram Eldar, Jun 13 2021

Extensions

Offset changed by Andrew Howroyd, Jul 06 2024

A146323 a(n) = floor(Sum_{i=1..n} (1/phi(i))).

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9
Offset: 1

Views

Author

Ctibor O. Zizka, Oct 30 2008

Keywords

Comments

Looking on the number of 1's, 2's, ..., k's in this sequence we obtain the sequence (1,2,4,5,9,16,25,42,72,...). Limit_{k->oo} (number of (k+1)'s / number of(k's)) = sqrt(e).
The limit above is wrong. The correct limit is exp(zeta(6)/(zeta(2)*zeta(3))) = exp(1/A082695) = 1.672818789624... . - Amiram Eldar, Jul 04 2025

Crossrefs

Programs

  • Mathematica
    IntegerPart[Accumulate[1/EulerPhi[Range[110]]]] (* Harvey P. Dale, Dec 19 2015 *)
  • PARI
    list(lim) = {my(s = 0); for(k = 1, lim, s += 1/eulerphi(k); print1(floor(s), ", "));} \\ Amiram Eldar, Jul 04 2025

Formula

a(n) = floor(A028415(n)/A048049(n)). - Amiram Eldar, Jul 04 2025

A098468 Decimal expansion of constant A*B in the asymptotic expression of the summatory function Sum_{n=1..N} (1/phi(n)) as A(log(N)+B) + O(log(N)/N).

Original entry on oeis.org

0, 6, 0, 5, 7, 4, 2, 2, 9, 4, 8, 6, 3, 0, 5, 7, 3, 2, 1, 6, 0, 9, 7, 4, 4, 0, 1, 1, 6, 6, 3, 1, 3, 8, 4, 0, 3, 5, 4, 9, 7, 2, 2, 8, 4, 0, 8, 8, 2, 9, 8, 9, 2, 8, 1, 1, 5, 1, 2, 2, 4, 4, 8, 5, 6, 0, 9, 3, 4, 9, 8, 5, 5, 9, 0, 1, 8, 6, 4, 9, 1, 3, 1, 2, 3, 9, 2, 9, 8, 1, 5
Offset: 0

Views

Author

Eric W. Weisstein, Sep 09 2004

Keywords

Comments

B equals EulerGamma - A085609.

Examples

			B = -0.0605742294.../A, where A is A082695.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.7 Euler totient constants, p. 116.

Crossrefs

Programs

  • Mathematica
    (* Using S. Finch's notation *)
    digits = 102;
    A = Zeta[2]*Zeta[3]/Zeta[6];
    S = Sum[Switch[Mod[k, 6], 0, 1, 1, 0, 2, -1, 3, -1, 4, 0, 5, 1]*PrimeZetaP'[k], {k, 2, 400}] // N[#, digits+40]&;
    B = EulerGamma - S;
    AB = A*B;
    Join[{0}, RealDigits[AB, 10, digits][[1]]] (* Jean-François Alcover, Apr 28 2018 *)

Formula

Sum_{n=1..N} 1/phi(n) = A*(log(N)+B) + O(log(N)/N). - Jean-François Alcover, Apr 28 2018

Extensions

More digits with the aid of A085609 and A082695 from R. J. Mathar, Jul 28 2010
More digits with the aid of A085609 and A082695 from Vaclav Kotesovec, Feb 17 2015

A340565 Decimal expansion of the Product_{lesser twin primes p == 5 (mod 6)} 1/(1 - 1/p^2).

Original entry on oeis.org

1, 0, 5, 6, 9, 3, 2, 2, 9, 1, 4
Offset: 1

Views

Author

Artur Jasinski, Jan 11 2021

Keywords

Comments

Lesser twin primes A001359 (with the exception of the first prime, 3) are congruent to 5 mod 6: this constant is smaller than A340576.
By extrapolating method most probably the next two decimal digits are 1.056932291(46).
The known high-precision algorithms for Euler products are based on the Dirichlet L function and the Moebius inversion formula (see Mathematica procedure of Jean-François Alcover in A175646).
The constant is between 1.056932291453... and 1.056932291494. - R. J. Mathar, Feb 14 2025

Examples

			1.0569322914...
		

Crossrefs

Extensions

One more digit confirmed by a bracketing of partial products - R. J. Mathar, Feb 14 2025

A373702 Decimal expansion of (2 - zeta(2))*zeta(2)*zeta(3)/zeta(6).

Original entry on oeis.org

6, 9, 0, 1, 0, 4, 8, 8, 2, 5, 1, 0, 2, 2, 4, 9, 7, 8, 1, 8, 7, 7, 3, 0, 0, 2, 5, 6, 7, 8, 2, 7, 5, 3, 2, 6, 4, 4, 0, 6, 6, 6, 2, 3, 1, 3, 1, 3, 3, 4, 8, 1, 2, 5, 4, 9, 1, 2, 2, 2, 9, 4, 2, 6, 0, 2, 0, 9, 9, 0, 1, 7, 1, 6, 8, 7, 3, 3, 7, 4, 6, 7, 2, 7, 9, 2, 6, 7, 8, 9, 1, 5, 0, 4, 0, 0, 5, 2, 5, 2
Offset: 0

Views

Author

Stefano Spezia, Jun 13 2024

Keywords

Examples

			0.69010488251022497818773002567827532644066623131...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2-Zeta[2])Zeta[2]Zeta[3]/Zeta[6],10,100][[1]]
Previous Showing 51-56 of 56 results.