cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A330294 Number of non-isomorphic fully chiral set-systems on n vertices.

Original entry on oeis.org

1, 2, 3, 10, 899
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the covered vertices gives a different representative.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 10 set-systems:
  0  0    0        0
     {1}  {1}      {1}
          {2}{12}  {2}{12}
                   {1}{3}{23}
                   {2}{13}{23}
                   {3}{23}{123}
                   {2}{3}{13}{23}
                   {1}{3}{23}{123}
                   {2}{13}{23}{123}
                   {2}{3}{13}{23}{123}
		

Crossrefs

The labeled version is A330282.
Partial sums of A330295 (the covering case).
Unlabeled costrict (or T_0) set-systems are A326946.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic fully chiral multiset partitions are A330227.
Fully chiral partitions are A330228.
Fully chiral factorizations are A330235.
MM-numbers of fully chiral multisets of multisets are A330236.

A330295 Number of non-isomorphic fully chiral set-systems covering n vertices.

Original entry on oeis.org

1, 1, 1, 7, 889
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the covered vertices gives a different representative.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 7 set-systems:
  0  {1}  {1}{12}  {1}{2}{13}
                   {1}{12}{23}
                   {1}{12}{123}
                   {1}{2}{12}{13}
                   {1}{2}{13}{123}
                   {1}{12}{23}{123}
                   {1}{2}{12}{13}{123}
		

Crossrefs

The labeled version is A330229.
First differences of A330294 (the non-covering case).
Unlabeled costrict (or T_0) set-systems are A326946.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic fully chiral multiset partitions are A330227.
Fully chiral partitions are A330228.
Fully chiral factorizations are A330235.
MM-numbers of fully chiral multisets of multisets are A330236.

A198628 Alternating sums of powers for 1,2,3,4 and 5.

Original entry on oeis.org

1, 3, 15, 81, 435, 2313, 12195, 63801, 331395, 1710153, 8775075, 44808921, 227890755, 1155180393, 5839846755, 29458152441, 148335904515, 745888593033, 3746364947235, 18799770158361, 94271405748675, 472449569948073, 2366624981836515, 11850654345690681, 59323452211439235
Offset: 0

Views

Author

Wolfdieter Lang, Oct 27 2011

Keywords

Comments

See A196848 for the e.g.f.s and o.g.f.s of such sequences for the numbers 1,2,...,2*n+1, and A196847
for the numbers 1,2,...,2*n.

Crossrefs

Programs

  • Maple
    A198628 := proc(n)
        3^n-4^n+1-2^n+5^n ;
    end proc:
    seq(A198628(n),n=0..20) ; # R. J. Mathar, May 11 2022
  • Mathematica
    LinearRecurrence[{15,-85,225,-274,120},{1,3,15,81,435},30] (* Harvey P. Dale, Dec 30 2024 *)

Formula

a(n) = sum(((-1)^(j+1))*j^n,j=1..5) = 1-2^n+3^n-4^n+5^n.
E.g.f.: sum(((-1)^(j+1))*exp(j*x),j=1..5) =
exp(x)*(1+exp(5*x))/(1+exp(x)).
O.g.f.: sum(((-1)^(j+1))/(1-j*x),j=1..5) =
(1-12*x+55*x^2-114*x^3+94*x^4)/product(1-j*x,j=1..5).
A formula for the numbers of the numerator polynomial is given in A196848.

A036550 a(n) = T(0,n) + T(1,n-1) + ... + T(n,0), array T given by A048471.

Original entry on oeis.org

1, 3, 9, 29, 95, 307, 973, 3033, 9339, 28511, 86537, 261637, 788983, 2375115, 7141701, 21457841, 64439027, 193448119, 580606465, 1742343645, 5228079471, 15686335523, 47063200829, 141197991049, 423610750315, 1270865805327
Offset: 0

Views

Author

Keywords

Crossrefs

Partial sums of A083323.

Programs

  • Magma
    [(1/2) * (3^(n+1) - 2^(n+2) + 2*n + 3): n in [0..30]]; // Vincenzo Librandi, Nov 12 2011

Formula

a(n) = (1/2) * (3^(n+1) - 2^(n+2) + 2n + 3). - Ralf Stephan, Feb 17 2004
G.f: (1/2)*(3/(1-3*x) - 4/(1-2*x) + 2*x/(1-x)^2 + 3/(1-x)). - Vincenzo Librandi, Nov 12 2011

Extensions

Corrected by T. D. Noe, Nov 07 2006

A134319 Triangle read by rows. T(n, k) = binomial(n, k)*(2^k - 1 + 0^k).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 9, 7, 1, 4, 18, 28, 15, 1, 5, 30, 70, 75, 31, 1, 6, 45, 140, 225, 186, 63, 1, 7, 63, 245, 525, 651, 441, 127, 1, 8, 84, 392, 1050, 1736, 1764, 1016, 255, 1, 9, 108, 588, 1890, 3906, 5292, 4572, 2295, 511, 1, 10, 135, 840, 3150, 7812, 13230, 15240, 11475, 5110, 1023
Offset: 0

Views

Author

Gary W. Adamson, Oct 19 2007

Keywords

Examples

			First few rows of the triangle:
  1;
  1, 1;
  1, 2,  3;
  1, 3,  9,   7;
  1, 4, 18,  28,  15;
  1, 5, 30,  70,  75,  31;
  1, 6, 45, 140, 225, 186,  63;
  1, 7, 63, 245, 525, 651, 441, 127;
  ...
		

Crossrefs

Cf. A083313, A083323 (row sums), A255047 (main diagonal).

Programs

  • Maple
    x:= 'x': T:= (n,k)-> `if` (k=0, 1, abs(coeff(expand((1-1/2^x)^n -(1-2/2^x)^n), 1/(2^x)^k))): seq(seq(T(n,k), k=0..n), n=0..12); # Alois P. Heinz, Dec 10 2008
    # Alternative:
    T := (n, k) -> binomial(n, k)*(2^k - 1 + 0^k):
    for n from 0 to 7 do seq(T(n, k), k=0..n) od;
    # Or as a recursion:
    p := proc(n, m) option remember; if n = 0 then max(1, m) else
        (m + x)*p(n - 1, m) - (m + 1)*p(n - 1, m + 1) fi end:
    Trow := n -> seq((-1)^k * coeff(p(n, 0), x, n - k), k = 0..n):  # Peter Luschny, Jun 23 2023
  • Mathematica
    max = 10; T1 = Table[Binomial[n, k], {n, 0, max}, {k, 0, max}]; T2 = Table[ If[n == k, 2^n-1, 0], {n, 0, max}, {k, 0, max}]; TT = T1.T2 ; T[, 0]=1; T[n, k_] := TT[[n+1, k+1]]; Table[T[n, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 26 2016 *)

Formula

Previous definition: A007318 * a triangle by rows: for n > 0, n zeros followed by 2^n - 1.
Binomial transform of a diagonalized infinite lower triangular matrix with (1, 1, 3, 7, 15, ...) in the main diagonal and the rest zeros.
T(n,k) = |[1/(2^x)^k] 1 + (1-1/2^x)^n - (1-2/2^x)^n|. - Alois P. Heinz, Dec 10 2008
T(n,k) = binomial(n,k)*M(k) where M is Mersenne-like A255047. - Yuchun Ji, Feb 13 2019

Extensions

More terms from Alois P. Heinz, Dec 10 2008
New name using a formula of Yuchun Ji by Peter Luschny, Jun 23 2023

A198629 Alternating sums of powers of 1,2,...,6, divided by 3.

Original entry on oeis.org

0, 1, 7, 45, 287, 1821, 11487, 72045, 449407, 2789181, 17230367, 105996045, 649630527, 3968504541, 24174772447, 146908944045, 890924667647, 5393590283901, 32604530573727, 196853323284045, 1187295678104767, 7154833690143261
Offset: 0

Views

Author

Wolfdieter Lang, Oct 28 2011

Keywords

Comments

For the e.g.f.s and o.g.f.s of such alternating power sums see A196847 (even case) and A196848 (odd case).

Crossrefs

Programs

  • Maple
    A198629 := proc(n)
        (-3^n+4^n-1+2^n-5^n+6^n)/3 ;
    end proc:
    seq(A198629(n),n=0..20) ; # R. J. Mathar, May 11 2022
  • Mathematica
    Table[Total[Times@@@Partition[Riffle[Range[6]^n,{-1,1},{2,-1,2}],2]]/3,{n,0,30}] (* Harvey P. Dale, Jul 17 2016 *)

Formula

a(n)=sum(((-1)^j)*j^n,j=1..6)/3, n>=0.
E.g.f.: sum(((-1)^j)*exp(j*x),j=1..6)/3 = exp(x)*(exp(6*x)-1)/(3*(exp(x)+1)).
O.g.f.: sum(((-1)^j)/(1-j*x),j=1..6)/3 = x*(1-14*x+73*x^2-168*x^3+148*x^4)/
product(1-j*x,j=1..6). See A196847 for a formula for the coefficients of the numerator polynomial.

A122960 Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 1, 0, 6, 1, 0, 0, 5, 0, 10, 1, 0, 1, 0, 15, 0, 15, 1, 0, 0, 7, 0, 35, 0, 21, 1, 0, 1, 0, 28, 0, 70, 0, 28, 1, 0, 0, 9, 0, 84, 0, 126, 0, 36, 1, 0, 1, 0, 45, 0, 210, 0, 210, 0, 45, 1
Offset: 0

Views

Author

Philippe Deléham, Oct 26 2006

Keywords

Comments

T(n,k) = binomial (n,n-k+1) if (n-k) is an odd number (see A000217, A000332, A000579, A000581, ...). T(n,k)= 0 if (n-k)=2x with x > 0 (see A000004). T(n,n)=1 (see A000012).

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 1;
  0, 0, 3,  1;
  0, 1, 0,  6,  1;
  0, 0, 5,  0, 10,   1;
  0, 1, 0, 15,  0,  15,   1;
  0, 0, 7,  0, 35,   0,  21,   1;
  0, 1, 0, 28,  0,  70,   0,  28,  1;
  0, 0, 9,  0, 84,   0, 126,   0, 36,  1;
  0, 1, 0, 45,  0, 210,   0, 210,  0, 45, 1;
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>n then 0
        elif k=n then 1
        elif n=2 and k=1 then 1
        elif k=0 then 0
        else 3*T(n-1, k-1) + T(n-2, k) - 3*T(n-2, k-2) - T(n-3, k-1) + T(n-3, k-3)
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 17 2020
  • Mathematica
    With[{m = 10}, CoefficientList[CoefficientList[Series[(1-2*x*y-x^2+x^2*y^2+
    x^2*y)/(1-3*x*y-x^2+3*x^2*y^2+x^3*y-x^3*y^3), {x, 0 , m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 17 2020 *)
  • PARI
    T(n, k) = if(k<0 || k>n, 0, if(k==n, 1, if(n==2 && k==1, 1, if(k==0, 0, 3*T(n-1, k-1) + T(n-2, k) - 3*T(n-2, k-2) - T(n-3, k-1) + T(n-3, k-3) )))); \\ G. C. Greubel, Feb 17 2020
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==n): return 1
        elif (n==2 and k==1): return 1
        elif (k==0): return 0
        else: return 3*T(n-1, k-1) + T(n-2, k) - 3*T(n-2, k-2) - T(n-3, k-1) + T(n-3, k-3)
    print([[T(n, k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 17 2020

Formula

Sum_{k=0..n} T(n,k) = A011782(n).
Sum_{k=0..n} 2^k*T(n,k) = A083323(n).
Sum_{k=0..n} 2^(n-k)*T(n,k) = A122983(n).
G.f.: (1 - 2*x*y - x^2 + x^2*y^2 + x^2*y)/(1 - 3*x*y - x^2 + 3*x^2*y^2 + x^3*y - x^3*y^3). - Philippe Deléham, Nov 09 2013
T(n,k) = 3*T(n-1,k-1) + T(n-2,k) - 3*T(n-2,k-2) - T(n-3,k-1) + T(n-3,k-3), T(0,0) = T(1,1) = T(2,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 09 2013

Extensions

a(12) corrected by Georg Fischer, Feb 17 2020

A198630 Alternating sums of powers of 1,2,...,7.

Original entry on oeis.org

1, 4, 28, 208, 1540, 11344, 83188, 607408, 4416580, 31986064, 230784148, 1659338608, 11892395620, 84983496784, 605698755508, 4306834677808, 30560156566660
Offset: 0

Views

Author

Wolfdieter Lang, Oct 28 2011

Keywords

Comments

For the e.g.f.s and o.g.f.s of such alternating power sums see A196847 (even case) and A196848 (odd case).

Examples

			a(2) = 1^2-2^2+3^2-4^2+5^2-6^2+7^2 = 28.
		

Crossrefs

Programs

  • Maple
    A198630 := proc(n)
        3^n-4^n+1-2^n+5^n-6^n+7^n ;
    end proc:
    seq(A198630(n),n=0..20) ; # R. J. Mathar, May 11 2022
  • PARI
    a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 5040,-13068,13132,-6769,1960,-322,28]^n*[1;4;28;208;1540;11344;83188])[1,1] \\ Charles R Greathouse IV, Jul 06 2017

Formula

a(n)=sum(((-1)^(j+1))*j^n,j=1..7), n>=0.
E.g.f.: sum(((-1)^(j+1))*exp(j*x),j=1..7)= exp(x)*
(1+exp(7*x))/(1+exp(x)).
O.g.f: sum(((-1)^(j+1))/(1-j*x),j=1..7) = (1-24*x+238*x^2-1248*x^3+3661*x^4-5736*x^5+3828*x^6)/
product(1-j*x,j=1..7). See A196848 for a formula for the coefficients of the numerator polynomial.
Previous Showing 21-28 of 28 results.