A330294
Number of non-isomorphic fully chiral set-systems on n vertices.
Original entry on oeis.org
1, 2, 3, 10, 899
Offset: 0
Non-isomorphic representatives of the a(0) = 1 through a(3) = 10 set-systems:
0 0 0 0
{1} {1} {1}
{2}{12} {2}{12}
{1}{3}{23}
{2}{13}{23}
{3}{23}{123}
{2}{3}{13}{23}
{1}{3}{23}{123}
{2}{13}{23}{123}
{2}{3}{13}{23}{123}
Partial sums of
A330295 (the covering case).
Unlabeled costrict (or T_0) set-systems are
A326946.
BII-numbers of fully chiral set-systems are
A330226.
Non-isomorphic fully chiral multiset partitions are
A330227.
Fully chiral partitions are
A330228.
Fully chiral factorizations are
A330235.
MM-numbers of fully chiral multisets of multisets are
A330236.
A330295
Number of non-isomorphic fully chiral set-systems covering n vertices.
Original entry on oeis.org
1, 1, 1, 7, 889
Offset: 0
Non-isomorphic representatives of the a(0) = 1 through a(3) = 7 set-systems:
0 {1} {1}{12} {1}{2}{13}
{1}{12}{23}
{1}{12}{123}
{1}{2}{12}{13}
{1}{2}{13}{123}
{1}{12}{23}{123}
{1}{2}{12}{13}{123}
First differences of
A330294 (the non-covering case).
Unlabeled costrict (or T_0) set-systems are
A326946.
BII-numbers of fully chiral set-systems are
A330226.
Non-isomorphic fully chiral multiset partitions are
A330227.
Fully chiral partitions are
A330228.
Fully chiral factorizations are
A330235.
MM-numbers of fully chiral multisets of multisets are
A330236.
Cf.
A000612,
A016031,
A055621,
A083323,
A283877,
A319637,
A330098,
A330231,
A330232,
A330234,
A330282.
A198628
Alternating sums of powers for 1,2,3,4 and 5.
Original entry on oeis.org
1, 3, 15, 81, 435, 2313, 12195, 63801, 331395, 1710153, 8775075, 44808921, 227890755, 1155180393, 5839846755, 29458152441, 148335904515, 745888593033, 3746364947235, 18799770158361, 94271405748675, 472449569948073, 2366624981836515, 11850654345690681, 59323452211439235
Offset: 0
-
A198628 := proc(n)
3^n-4^n+1-2^n+5^n ;
end proc:
seq(A198628(n),n=0..20) ; # R. J. Mathar, May 11 2022
-
LinearRecurrence[{15,-85,225,-274,120},{1,3,15,81,435},30] (* Harvey P. Dale, Dec 30 2024 *)
A036550
a(n) = T(0,n) + T(1,n-1) + ... + T(n,0), array T given by A048471.
Original entry on oeis.org
1, 3, 9, 29, 95, 307, 973, 3033, 9339, 28511, 86537, 261637, 788983, 2375115, 7141701, 21457841, 64439027, 193448119, 580606465, 1742343645, 5228079471, 15686335523, 47063200829, 141197991049, 423610750315, 1270865805327
Offset: 0
A134319
Triangle read by rows. T(n, k) = binomial(n, k)*(2^k - 1 + 0^k).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 9, 7, 1, 4, 18, 28, 15, 1, 5, 30, 70, 75, 31, 1, 6, 45, 140, 225, 186, 63, 1, 7, 63, 245, 525, 651, 441, 127, 1, 8, 84, 392, 1050, 1736, 1764, 1016, 255, 1, 9, 108, 588, 1890, 3906, 5292, 4572, 2295, 511, 1, 10, 135, 840, 3150, 7812, 13230, 15240, 11475, 5110, 1023
Offset: 0
First few rows of the triangle:
1;
1, 1;
1, 2, 3;
1, 3, 9, 7;
1, 4, 18, 28, 15;
1, 5, 30, 70, 75, 31;
1, 6, 45, 140, 225, 186, 63;
1, 7, 63, 245, 525, 651, 441, 127;
...
-
x:= 'x': T:= (n,k)-> `if` (k=0, 1, abs(coeff(expand((1-1/2^x)^n -(1-2/2^x)^n), 1/(2^x)^k))): seq(seq(T(n,k), k=0..n), n=0..12); # Alois P. Heinz, Dec 10 2008
# Alternative:
T := (n, k) -> binomial(n, k)*(2^k - 1 + 0^k):
for n from 0 to 7 do seq(T(n, k), k=0..n) od;
# Or as a recursion:
p := proc(n, m) option remember; if n = 0 then max(1, m) else
(m + x)*p(n - 1, m) - (m + 1)*p(n - 1, m + 1) fi end:
Trow := n -> seq((-1)^k * coeff(p(n, 0), x, n - k), k = 0..n): # Peter Luschny, Jun 23 2023
-
max = 10; T1 = Table[Binomial[n, k], {n, 0, max}, {k, 0, max}]; T2 = Table[ If[n == k, 2^n-1, 0], {n, 0, max}, {k, 0, max}]; TT = T1.T2 ; T[, 0]=1; T[n, k_] := TT[[n+1, k+1]]; Table[T[n, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 26 2016 *)
A198629
Alternating sums of powers of 1,2,...,6, divided by 3.
Original entry on oeis.org
0, 1, 7, 45, 287, 1821, 11487, 72045, 449407, 2789181, 17230367, 105996045, 649630527, 3968504541, 24174772447, 146908944045, 890924667647, 5393590283901, 32604530573727, 196853323284045, 1187295678104767, 7154833690143261
Offset: 0
-
A198629 := proc(n)
(-3^n+4^n-1+2^n-5^n+6^n)/3 ;
end proc:
seq(A198629(n),n=0..20) ; # R. J. Mathar, May 11 2022
-
Table[Total[Times@@@Partition[Riffle[Range[6]^n,{-1,1},{2,-1,2}],2]]/3,{n,0,30}] (* Harvey P. Dale, Jul 17 2016 *)
A122960
Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 1, 0, 6, 1, 0, 0, 5, 0, 10, 1, 0, 1, 0, 15, 0, 15, 1, 0, 0, 7, 0, 35, 0, 21, 1, 0, 1, 0, 28, 0, 70, 0, 28, 1, 0, 0, 9, 0, 84, 0, 126, 0, 36, 1, 0, 1, 0, 45, 0, 210, 0, 210, 0, 45, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 0, 3, 1;
0, 1, 0, 6, 1;
0, 0, 5, 0, 10, 1;
0, 1, 0, 15, 0, 15, 1;
0, 0, 7, 0, 35, 0, 21, 1;
0, 1, 0, 28, 0, 70, 0, 28, 1;
0, 0, 9, 0, 84, 0, 126, 0, 36, 1;
0, 1, 0, 45, 0, 210, 0, 210, 0, 45, 1;
-
T:= proc(n, k) option remember;
if k<0 or k>n then 0
elif k=n then 1
elif n=2 and k=1 then 1
elif k=0 then 0
else 3*T(n-1, k-1) + T(n-2, k) - 3*T(n-2, k-2) - T(n-3, k-1) + T(n-3, k-3)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 17 2020
-
With[{m = 10}, CoefficientList[CoefficientList[Series[(1-2*x*y-x^2+x^2*y^2+
x^2*y)/(1-3*x*y-x^2+3*x^2*y^2+x^3*y-x^3*y^3), {x, 0 , m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 17 2020 *)
-
T(n, k) = if(k<0 || k>n, 0, if(k==n, 1, if(n==2 && k==1, 1, if(k==0, 0, 3*T(n-1, k-1) + T(n-2, k) - 3*T(n-2, k-2) - T(n-3, k-1) + T(n-3, k-3) )))); \\ G. C. Greubel, Feb 17 2020
-
@CachedFunction
def T(n, k):
if (k<0 or k>n): return 0
elif (k==n): return 1
elif (n==2 and k==1): return 1
elif (k==0): return 0
else: return 3*T(n-1, k-1) + T(n-2, k) - 3*T(n-2, k-2) - T(n-3, k-1) + T(n-3, k-3)
print([[T(n, k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 17 2020
A198630
Alternating sums of powers of 1,2,...,7.
Original entry on oeis.org
1, 4, 28, 208, 1540, 11344, 83188, 607408, 4416580, 31986064, 230784148, 1659338608, 11892395620, 84983496784, 605698755508, 4306834677808, 30560156566660
Offset: 0
a(2) = 1^2-2^2+3^2-4^2+5^2-6^2+7^2 = 28.
-
A198630 := proc(n)
3^n-4^n+1-2^n+5^n-6^n+7^n ;
end proc:
seq(A198630(n),n=0..20) ; # R. J. Mathar, May 11 2022
-
a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 5040,-13068,13132,-6769,1960,-322,28]^n*[1;4;28;208;1540;11344;83188])[1,1] \\ Charles R Greathouse IV, Jul 06 2017
Comments