cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A015551 Expansion of x/(1 - 6*x - 5*x^2).

Original entry on oeis.org

0, 1, 6, 41, 276, 1861, 12546, 84581, 570216, 3844201, 25916286, 174718721, 1177893756, 7940956141, 53535205626, 360916014461, 2433172114896, 16403612761681, 110587537144566, 745543286675801, 5026197405777636
Offset: 0

Views

Author

Keywords

Comments

Let the generator matrix for the ternary Golay G_12 code be [I|B], where the elements of B are taken from the set {0,1,2}. Then a(n)=(B^n)1,2 for instance. - _Paul Barry, Feb 13 2004
Pisano period lengths: 1, 2, 4, 4, 1, 4, 42, 8, 12, 2, 10, 4, 12, 42, 4, 16, 96, 12, 360, 4, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    Join[{a=0,b=1},Table[c=6*b+5*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
    CoefficientList[Series[x/(1-6x-5x^2),{x,0,20}],x] (* or *) LinearRecurrence[ {6,5},{0,1},30] (* Harvey P. Dale, Oct 30 2017 *)
  • PARI
    a(n)=([0,1; 5,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
  • Sage
    [lucas_number1(n,6,-5) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = 6*a(n-1) + 5*a(n-2).
a(n) = sqrt(14)*(3+sqrt(14))^n/28 - sqrt(14)*(3-sqrt(14))^n/28. - Paul Barry, Feb 13 2004

A189800 a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    LinearRecurrence[{6, 8}, {0, 1}, 50]
    CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011

A387480 a(n) = Sum_{k=0..n} 3^k * 2^(n-k) * binomial(k,n-k)^2.

Original entry on oeis.org

1, 3, 15, 99, 603, 3807, 24759, 162243, 1072683, 7147359, 47887767, 322330995, 2178055899, 14765637663, 100380161655, 684061007139, 4671543976587, 31962145170015, 219043736154711, 1503380943222867, 10332034575214779, 71092843087100319, 489712662842798007
Offset: 0

Views

Author

Seiichi Manyama, Aug 30 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[3^k * 2^(n-k) * Binomial(k, n-k)^2: k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 01 2025
  • Mathematica
    Table[Sum[3^k*2^(n-k)*Binomial[k,n-k]^2,{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Sep 01 2025 *)
  • PARI
    a(n) = sum(k=0, n, 3^k*2^(n-k)*binomial(k, n-k)^2);
    

Formula

G.f.: 1/sqrt((1-3*x-6*x^2)^2 - 72*x^3).

A015541 Expansion of x/(1 - 5*x - 7*x^2).

Original entry on oeis.org

0, 1, 5, 32, 195, 1199, 7360, 45193, 277485, 1703776, 10461275, 64232807, 394392960, 2421594449, 14868722965, 91294775968, 560554940595, 3441838134751, 21133075257920, 129758243232857, 796722742969725, 4891921417478624, 30036666288181195
Offset: 0

Views

Author

Keywords

Comments

Pisano period lengths: 1, 3, 8, 6, 8, 24, 6, 6, 24, 24, 5, 24, 12, 6, 8, 12, 16, 24, 120, 24, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

Formula

a(n) = 5*a(n-1) + 7*a(n-2).

A015544 Lucas sequence U(5,-8): a(n+1) = 5*a(n) + 8*a(n-1), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 5, 33, 205, 1289, 8085, 50737, 318365, 1997721, 12535525, 78659393, 493581165, 3097180969, 19434554165, 121950218577, 765227526205, 4801739379641, 30130517107845, 189066500576353, 1186376639744525, 7444415203333449, 46713089134623445
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 5*Self(n-1) + 8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2012
    
  • Mathematica
    a[n_]:=(MatrixPower[{{1,2},{1,-6}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{5, 8}, {0, 1}, 30] (* Vincenzo Librandi, Nov 13 2012 *)
  • PARI
    A015544(n)=imag((2+quadgen(57))^n) \\ M. F. Hasler, Mar 06 2009
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1 - 5*x - 8*x^2))) \\ G. C. Greubel, Jan 01 2018
  • Sage
    [lucas_number1(n,5,-8) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = 5*a(n-1) + 8*a(n-2).
G.f.: x/(1 - 5*x - 8*x^2). - M. F. Hasler, Mar 06 2009

Extensions

More precise definition by M. F. Hasler, Mar 06 2009

A208328 Triangle of coefficients of polynomials u(n,x) jointly generated with A208329; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 9, 11, 1, 1, 9, 13, 25, 21, 1, 1, 11, 17, 43, 53, 43, 1, 1, 13, 21, 65, 97, 125, 85, 1, 1, 15, 25, 91, 153, 255, 273, 171, 1, 1, 17, 29, 121, 221, 441, 597, 609, 341, 1, 1, 19, 33, 155, 301, 691, 1089, 1443, 1325, 683, 1, 1, 21
Offset: 1

Views

Author

Clark Kimberling, Feb 26 2012

Keywords

Comments

Row sums, u(n,1): A000129
Row sums, v(n,1): A001333
Subtriangle of the triangle T(n,k) given by (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 07 2012

Examples

			First five rows:
  1;
  1, 1;
  1, 1, 3;
  1, 1, 5, 5;
  1, 1, 7, 9, 11;
First five polynomials u(n,x):
  1
  1 + x
  1 + x + 3x^2
  1 + x + 5x^2 + 5x^3
  1 + x + 7x^2 + 9x^3 + 11x^4.
From _Philippe Deléham_, Mar 07 2012: (Start)
(1, 0, -1, 1, 0, 0, 0, ...) DELTA (0, 1, 2, -2, 0, 0, 0, ...) begins:
  1;
  1, 0;
  1, 1,  0;
  1, 1,  3,  0;
  1, 1,  5,  5,  0;
  1, 1,  7,  9, 11,  0;
  1, 1,  9, 13, 25, 21,  0;
  1, 1, 11, 17, 43, 53, 43, 0; (End)
		

Crossrefs

Cf. A208329.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A208328 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A208329 *)

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = 2x*u(n-1,x) + x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 07 2012: (Start)
As DELTA-triangle T(n,k), 0 <= k <= n:
G.f.: (1-y*x - y*(2*y-1)*x^2)/(1-(1+y)*x-y(2*y-1)*x^2).
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + 2*T(n-2,k-2), T(0,0) = 1, T(1,0) = 1, T(1,1) = 0, T(n,k) = 0 if k < 0 or if k > n.
Sum_{k=0..n, n>0} T(n,k)*x^k = A000012(n), A000129(n), A083858(n) for x = 0, 1, 2 respectively. (End)

A299146 Modified Pascal's triangle read by rows: T(n,k) = C(n+1,k) - n, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 15, 10, 1, 1, 15, 29, 29, 15, 1, 1, 21, 49, 63, 49, 21, 1, 1, 28, 76, 118, 118, 76, 28, 1, 1, 36, 111, 201, 243, 201, 111, 36, 1, 1, 45, 155, 320, 452, 452, 320, 155, 45, 1, 1, 55, 209, 484, 781, 913, 781, 484, 209, 55, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 03 2018

Keywords

Comments

If we define T_m(n, k) = binomial(n+m,k) - m*n where m <= k <= n, then T_0 is Pascal's triangle A007318 and T_1 is the current triangle sequence.
This modified Pascal's triangle is symmetric: C(n+m, k) - m*n = C(n+m, n-k+1) - m*n for any nonnegative integer m.

Examples

			The triangle T(n, k) begins:
n\k  1    2    3    4    5    6    7    8    9   10
1    1;
2    1,   1;
3    1,   3,   1;
4    1,   6,   6,   1;
5    1,  10,  15,  10,   1;
6    1,  15,  29,  29,  15,   1;
7    1,  21,  49,  63,  49,  21,   1;
8    1,  28,  76, 118, 118,  76,  28,   1;
9    1,  36, 111, 201, 243, 201, 111,  36,   1;
10   1,  45, 155, 320, 452, 452, 320, 155,  45,   1; etc.
		

Crossrefs

Programs

  • GAP
    Flat(List([1..100],n->List([1..n],k->Binomial(n+1,k)-n))); # Muniru A Asiru, Feb 05 2018
    
  • Magma
    [[Binomial(n+1, k)- 1*n: k in [1..n]]: n in [1..10]];
    
  • Maple
    seq(seq(binomial(n+1,k)-n, k=1..n), n=1..10); # Muniru A Asiru, Feb 05 2018
  • Mathematica
    Table[Binomial[n + 1, k] - n, {n, 11}, {k, n}] // Flatten (* Michael De Vlieger, Feb 05 2018 *)
  • PARI
    T(n, k) = binomial(n+1,k) - n;
    tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Mar 01 2018

Formula

T(n, k) = T_1(n, k) = binomial(n+1, k) - n, for 1 <= k <= n.

A249861 a(n) are values of k that yield "record-breaking" integer sequence lengths for the recursion: b(i) = 3*(b(i-1) + b(i-2))/2, with b(0) = 1 and b(1) = k.

Original entry on oeis.org

1, 5, 37, 101, 229, 485, 2533, 6629, 23013, 88549, 219621, 481765, 1006053, 3103205, 7297509, 24074725, 158292453, 1232034277, 3379517925, 7674485221, 282552392165, 1382064019941, 5780110531045, 14576203553253, 84944947730917, 647894901152229
Offset: 1

Views

Author

Richard R. Forberg, Nov 07 2014

Keywords

Comments

For all such b(i) sequences there is a value of i = Nmax, such that for i<=Nmax the sequence produces integers and for i > Nmax the sequence produces rational non-integers. Thus the "length" of the integer portion of b(i) is Nmax + 1 (when including b(0)).
Nmax is a function of the integer k > 0, written as Nmax(k).
Let B(i,k) be the array of all b(i) sequences, where k also serves as column index.
By definition k=1 is record-breaking. Nmax(1) = 3.
B(i,1) has four integer elements: 1,1,3,6.
Nmax(2k) = 1 for all k. Only b(0) and b(1) are integers when k is even.
A record-breaking b(i) has k = r such that Nmax(r) > Nmax(k) for all k < r.
Nmax(k) varies in an irregular pattern, tied to powers of 2 as explained below. This is also true of b(i) sequence families with other nonzero values of b(0).
(This contrasts with the family where b(0) = 0. In that case the record-breaking values k are simply the powers of 2, since each record-breaking Nmax is +1 greater in length than the prior such Nmax.)
Here, the values of Nmax for record-breaking b(i) lengths starting at k = 1 are 3, 6, 7, 8, 9, 12, 13, 15, 17, 18, 19, 20, 22, 23, 25, 28, 31, 32, 33, 39, 41, 43, 44, 47, 50, 54, 56, 59, 60, 62, 63, 64, 65, 69, 70, 71, 72, 73, 74, 76, 80, 83, 87, 89, 90, ...
B(i,k) follows these rules, regardless of irregularity in Nmax:
Rule 1: If B(i,k) is an integer then B(i, k + 2^(i-1)) is an integer.
Rule 2: If k = r1 and k = r2 yield two consecutive record-breaking b(i) sequences, then r2 = r1 + 2^(Nmax(r1) - 1).
Thus the index of the next record-breaking sequence can be found without searching.
Rule 3: B(i,k + 2^(i-1)) - B(i,k) = A083858(i) for all k, regardless of whether the B(i,k) sequence elements selected are integers.
Conjecture: Rules 1 & 2 apply for all such b(i) sequences of the form: b(i) = m*(b(i-1) + b(i-2))/2, b(0) = j, b(1) = k, for j >= 0 and odd integers m > 2.
Rule 3, for any odd m, generalizes as: B(i,k + 2^(i-1)) - B(i,k), for all k, equals sequences of the form f(i) = m*f(i-1) + 2m*f(i-2), f(0) = 0, f(1) = 1.
It appears that a simple rule for finding the next record-breaking sequence may not exist for b(i) sequences of the form: b(i) = 2*(b(i-1) + b(i-2))/3, b(0) = 1, b(1) = 1. A factor 2 must be "occasionally" applied to the predicted power of 3.
Also note, (a(n)-1)/4 is an integer. The first seven nonzero values of this reduced form are the same as A113828, but otherwise no relationship.

Examples

			Subtracting 1 from Nmax gives the exponents of 2 needed to generate a(n) using the formula above,  as:
a(1) = 1 (by definition)
a(2) = 1 + 2^(3-1) = 5
a(3) = 5 + 2^(6-1) = 37
a(4) = 37 + 2^(7-1) = 101
... etc.
		

Crossrefs

Cf. A083858.

Formula

a(n) = a(n-1) + 2^(Nmax(a(n-1)) - 1), where Nmax at a(n-1) (i.e., the prior record-breaking k value) must be found by calculation of b(i) and "observation".
Previous Showing 11-18 of 18 results.