cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A339393 Denominators of the probability that when a stick is broken up at n-1 points independently and uniformly chosen at random along its length there exist 3 of the n pieces that can form a triangle.

Original entry on oeis.org

1, 1, 4, 7, 28, 56, 88, 594, 5808, 415272, 8758464, 274431872, 12856077696, 905435186304, 481691519113728, 77763074616922464, 3824113551749834112, 1437016892446437662976, 165559472503434318118656, 146602912901791088694069888, 200050146291129782743679367168
Offset: 1

Views

Author

Amiram Eldar, Dec 04 2020

Keywords

Comments

See A339392 for details.

Crossrefs

Cf. A000045, A001791, A084623, A234951, A243398, A339392 (numerators).

Programs

  • Mathematica
    f = Table[k/(Fibonacci[k + 2] - 1), {k, 2, 20}]; Denominator[1 - FoldList[Times, 1, f]]

Formula

a(n) = denominator(1 - Product_{k=2..n} k/(Fibonacci(k+2)-1)).

A363399 Triangle read by rows. T(n, k) = [x^k] P(n, x), where P(n, x) = Sum_{k=0..n} 2^(n - k) * Sum_{j=0..k} (x^j * binomial(k, j) * (j + 1)^n), (tangent case).

Original entry on oeis.org

1, 3, 2, 7, 16, 9, 15, 88, 135, 64, 31, 416, 1296, 1536, 625, 63, 1824, 10206, 22528, 21875, 7776, 127, 7680, 72171, 262144, 453125, 373248, 117649, 255, 31616, 478953, 2670592, 7265625, 10357632, 7411887, 2097152, 511, 128512, 3057426, 25034752, 100000000, 218350080, 265180846, 167772160, 43046721
Offset: 0

Views

Author

Peter Luschny, May 31 2023

Keywords

Comments

Here we give an inclusion-exclusion representation of 2^n*Euler(n, 1) = A155585(n), in A363398 we give such a representation for 2^n*Euler(n), and in A363400 one for the combined sequences.

Examples

			The triangle T(n, k) begins:
  [0]   1;
  [1]   3,     2;
  [2]   7,    16,      9;
  [3]  15,    88,    135,      64;
  [4]  31,   416,   1296,    1536,     625;
  [5]  63,  1824,  10206,   22528,   21875,     7776;
  [6] 127,  7680,  72171,  262144,  453125,   373248,  117649;
  [7] 255, 31616, 478953, 2670592, 7265625, 10357632, 7411887, 2097152;
		

Crossrefs

Cf. A155585 (alternating row sums), A363397 (row sums), A126646 (column 0), A000169 (main diagonal), A163395 (central terms), A084623.
Cf. A363398 (secant case), A363400 (combined case).

Programs

  • Maple
    P := (n, x) -> add(add(x^j*binomial(k, j)*(j + 1)^n, j=0..k)*2^(n - k), k = 0..n):
    T := (n, k) -> coeff(P(n, x), x, k): seq(seq(T(n, k), k = 0..n), n = 0..8);
  • Mathematica
    (* From  Detlef Meya, Oct 04 2023: (Start) *)
    T[n_, k_] := (k+1)^n*(2^(n+1)-Sum[Binomial[n+1, j], {j, 0, k}]);
    (* Or *)
    T[n_, k_] := (k+1)^n*Binomial[n+1, k+1]*Hypergeometric2F1[1, k-n, k+2, -1];
    Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]]  (* End *)

Formula

Sum_{k=0..n} (-1)^k * T(n, k) = 2^n*Euler(n, 1) = (-2)^n*Euler(n, 0) = A155585(n).
From Detlef Meya, Oct 04 2023: (Start)
T(n, k) = (k + 1)^n*binomial(n + 1, k + 1)*hypergeom([1, k - n], [k + 2], -1).
T(n, k) = (k + 1)^n * (2^(n + 1) - add(binomial(n + 1, j), j=0..k)). (End)

A301631 Numerator of population variance of n-th row of Pascal's triangle.

Original entry on oeis.org

0, 0, 2, 1, 94, 122, 2372, 173, 50294, 56014, 983740, 266930, 18376812, 19624884, 333313544, 5500541, 5923399334, 6206260694, 103708093964, 27001710566, 1795265477444, 1860906681644, 30802090121144, 1988024895074, 524715115366844, 540193965134732, 8886200762228312
Offset: 0

Views

Author

N. J. A. Sloane and Chai Wah Wu, Mar 24 2018

Keywords

Comments

Denominator of population variance of n-th row of Pascal's triangle is A191871(n+1) = A000265(n+1)^2.

Examples

			The first few population variances are 0, 0, 2/9, 1, 94/25, 122/9, 2372/49, 173, 50294/81, 56014/25, 983740/121, 266930/9, 18376812/169, 19624884/49, 333313544/225, 5500541, 5923399334/289, ...
		

Crossrefs

Programs

  • PARI
    a(n) = numerator(binomial(2*n,n)/(n+1) - 4^n/(n+1)^2); \\ Altug Alkan, Mar 25 2018
  • Python
    from fractions import Fraction
    from sympy import binomial
    def A301631(n):
        return (Fraction(int(binomial(2*n,n)))/(n+1) - Fraction(4**n)/(n+1)**2).numerator
    

Formula

a(n) = numerator of binomial(2n,n)/(n+1) - 4^n/(n+1)^2.
a(n) = A000108(n)*A000265(n+1)^2 - A075101(n+1)^2/4.

A320086 Triangle read by rows, 0 <= k <= n: T(n,k) is the denominator of the derivative of the k-th Bernstein basis polynomial of degree n evaluated at the interval midpoint t = 1/2; numerator is A320085.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 2, 1, 1, 1, 2, 16, 16, 8, 8, 16, 16, 16, 4, 16, 1, 16, 4, 16, 64, 64, 64, 64, 64, 64, 64, 64, 16, 8, 8, 8, 1, 8, 8, 8, 16, 256, 256, 64, 64, 128, 128, 64, 64, 256, 256, 256, 32, 256, 16, 128, 1, 128, 16, 256, 32, 256
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
    1;
    1,   1;
    1,   1,   1;
    4,   4,   4,  4;
    2,   1,   1,  1,   2;
   16,  16,   8,  8,  16,  16;
   16,   4,  16,  1,  16,   4,  16;
   64,  64,  64, 64,  64,  64,  64, 64;
   16,   8,   8,  8,   1,   8,   8,  8,  16;
  256, 256,  64, 64, 128, 128,  64, 64, 256, 256;
  256,  32, 256, 16, 128,   1, 128, 16, 256,  32, 256;
  ...
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) 2^(n-1)/gcd(n*(binomial(n-1,k-1)-binomial(n-1,k)),2^(n-1)); end proc: seq(seq(T(n,k),k=0..n),n=1..11); # Muniru A Asiru, Oct 06 2018
  • Mathematica
    Table[Denominator[n*(Binomial[n-1, k-1] - Binomial[n-1, k])/2^(n-1)], {n, 0, 12}, {k, 0, n}]//Flatten
  • Maxima
    T(n, k) := 2^(n - 1)/gcd(n*(binomial(n - 1, k - 1) - binomial(n - 1, k)), 2^(n - 1))$
    tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, n))$
    
  • Sage
    def A320086(n,k): return denominator(n*(binomial(n-1, k-1) - binomial(n-1, k))/2^(n-1))
    flatten([[A320086(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 19 2021

Formula

T(n, k) = denominator of 2*A141692(n,k)/A000079(n).
T(n, k) = 2^(n-1)/gcd(n*(binomial(n-1, k-1) - binomial(n-1, k)), 2^(n-1)).
T(n, n-k) = T(n,k).
T(n, 0) = A084623(n), n > 0.
T(2*n+1, 1) = A000302(n).

A352485 Decimal expansion of the probability that when a unit interval is broken at two points uniformly and independently chosen at random along its length the lengths of the resulting three intervals are the altitudes of a triangle.

Original entry on oeis.org

2, 3, 2, 9, 8, 1, 4, 5, 8, 3, 1, 3, 6, 0, 9, 6, 9, 3, 3, 3, 4, 6, 3, 9, 7, 5, 9, 0, 8, 1, 4, 5, 3, 0, 2, 1, 0, 1, 8, 9, 6, 9, 6, 3, 8, 0, 9, 6, 6, 9, 5, 1, 7, 1, 4, 1, 6, 8, 1, 4, 6, 4, 9, 5, 8, 2, 1, 4, 6, 9, 1, 7, 1, 0, 6, 7, 1, 6, 7, 0, 7, 2, 6, 7, 5, 7, 6, 6, 3, 5, 2, 7, 3, 3, 2, 7, 8, 9, 2, 9, 7, 5, 1, 9, 3
Offset: 0

Views

Author

Amiram Eldar, Mar 18 2022

Keywords

Examples

			0.23298145831360969333463975908145302101896963809669...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[24*Sqrt[5]*Log[GoldenRatio]/25 - 4/5, 10, 100][[1]]

Formula

Equals 12*sqrt(5)*log((3+sqrt(5))/2)/25 - 4/5.
Equals 24*sqrt(5)*log(phi)/25 - 4/5, where phi is the golden ratio (A001622).

A014964 a(n) = lcm(n, 2^(n-1)).

Original entry on oeis.org

1, 2, 12, 8, 80, 96, 448, 128, 2304, 2560, 11264, 6144, 53248, 57344, 245760, 32768, 1114112, 1179648, 4980736, 2621440, 22020096, 23068672, 96468992, 25165824, 419430400, 436207616, 1811939328
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[LCM[n,2^(n-1)],{n,30}] (* Harvey P. Dale, Jun 03 2012 *)

Formula

a(n) = n * A084623(n). - Paul Curtz, May 21 2016.

A178623 Triangle T(n,m) read by rows: T(n,0)= prime(n); T(n,m)=1 if m>=1.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 5, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 29
Offset: 0

Views

Author

Paul Curtz, May 31 2010

Keywords

Comments

The sequence reflects a conjecture on the denominator of inverse Bernoulli polynomials in A178340: if the row index is one less than one of the primes in A008578, the row of denominators starts with that prime and contains 1's in the remaining entries.
[Row sums in A178252 are A159069(n+1), unless there is a common factor in numerator and denominator. The row sum over columns with index of the same parity as the row index in the table of fractions of the [x^m] B^{-1}(n,x) in A178252 are: 1, 1, 1/3+1=4/3, 1+1=2, 1/5+2+1=16/5, 1+10/3+1=16/3, 1/7+3+5+1=64/7, 16, 256/9, 256/5, 1024/11, 512/3, 496/13, ... =A084623(n+1)/A000265(n+1).]

Examples

			1;
2,1;
3,1,1;
5,1,1,1,1;
7,1,1,1,1,1,1;
11,1,1,1,1,1,1,1,1,1,1;
13,1,1,1,1,1,1,1,1,1,1,1,1;
17,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
19,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
23,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
29,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
		

Crossrefs

Cf. A076274 (row sums).

Formula

T(n,0) = A008578(n+1). T(n,m) =1, 1<=m<=A008578(n+1)-1.
Previous Showing 11-17 of 17 results.