cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A134736 a(1) = 5; for n >1, a(n) = a(n-1) + gcd(n, a(n-1)).

Original entry on oeis.org

5, 6, 9, 10, 15, 18, 19, 20, 21, 22, 33, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 69, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 141, 144, 145, 150, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2008

Keywords

References

  • Eric S. Rowland, A simple prime-generating recurrence, Abstracts Amer. Math. Soc., 29 (No. 1, 2008), p. 50 (Abstract 1035-11-986).

Crossrefs

See A106108 for other cross-references.
Cf. A230504, A134743 (first differences), A084662, A084663.

Programs

  • Haskell
    a134736 n = a134736_list !! (n-1)
    a134736_list =
       5 : zipWith (+) a134736_list (zipWith gcd a134736_list [2..])
    -- Reinhard Zumkeller, Nov 15 2013
  • Mathematica
    a[1] = 5; a[n_] := a[n] = a[n-1] + GCD[n, a[n-1]];
    Array[a, 66] (* Jean-François Alcover, Oct 01 2018 *)
    RecurrenceTable[{a[1]==5,a[n]==a[n-1]+GCD[n,a[n-1]]},a,{n,70}] (* Harvey P. Dale, Nov 24 2018 *)

A167170 a(6) = 14, for n >= 7, a(n) = a(n-1) + gcd(n, a(n-1)).

Original entry on oeis.org

14, 21, 22, 23, 24, 25, 26, 39, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 177, 180, 181, 182, 189, 190, 195
Offset: 6

Views

Author

Vladimir Shevelev, Oct 29 2009, Nov 06 2009

Keywords

Comments

For every n >= 7, a(n) - a(n-1) is 1 or prime. This Rowland-like "generator of primes" is different from A106108 (see comment to A167168).

Crossrefs

Programs

  • Maple
    A167170 := proc(n) option remember; if n = 6 then 14; else procname(n-1)+igcd(n,procname(n-1)) ; end if; end proc: seq(A167170(i),i=6..80) ; # R. J. Mathar, Oct 30 2010
  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1] + GCD[n, a[n - 1]], a[6] == 14}, a, {n, 6, 100}] (* G. C. Greubel, Jun 04 2016 *)
    nxt[{n_,a_}]:={n+1,a+GCD[a,n+1]}; NestList[nxt,{6,14},60][[All,2]] (* Harvey P. Dale, Nov 03 2019 *)
  • PARI
    first(n)=my(v=vector(n-5)); v[1]=14; for(k=7,n, v[k-5]=v[k-6]+gcd(k,v[k-6])); v \\ Charles R Greathouse IV, Aug 22 2017

Extensions

Terms > 91 from R. J. Mathar, Oct 30 2010

A167195 a(2)=3, for n>=3, a(n)=a(n-1)+gcd(n, a(n-1)).

Original entry on oeis.org

3, 6, 8, 9, 12, 13, 14, 15, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116
Offset: 2

Views

Author

Vladimir Shevelev, Oct 30 2009, Nov 06 2009

Keywords

Comments

For every n>=3, a(n)-a(n-1) is 1 or prime. This Rowland-like "generator of primes" is different from A106108 and from generators A167168. Generalization: Let p be a prime. Let N(p-1)=p and for n>=p, N(n)=N(n-1)+gcd(n, N(n-1)). Then, for every n>=p, N(n)-N(n-1) is 1 or prime.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1] + GCD[n, a[n - 1]], a[2] == 3}, a, {n, 2, 100}] (* G. C. Greubel, Jun 05 2016 *)

Formula

a(n) = a(n-1) + 1 if gcd(a(n-1), n) = 1, or a(n) = 2*n otherwise. - Yifan Xie, Aug 20 2025

Extensions

Edited by Charles R Greathouse IV, Nov 02 2009

A167495 Records in A167494.

Original entry on oeis.org

2, 3, 5, 13, 31, 61, 139, 283, 571, 1153, 2311, 4651, 9343, 19141, 38569, 77419, 154873, 310231, 621631, 1243483, 2486971, 4974721
Offset: 1

Views

Author

Vladimir Shevelev, Nov 05 2009

Keywords

Comments

Conjecture: each term > 3 of the sequence is the greater member of a twin prime pair (A006512).
Indices of the records are 1, 2, 4, 6, 9, 10, 15, 18, 21, 25, 28, 30, 38, 72, 90, ... [R. J. Mathar, Nov 05 2009]
One can formulate a similar conjecture without verification of the primality of the terms (see Conjecture 4 in my paper). [Vladimir Shevelev, Nov 13 2009]

Crossrefs

Programs

  • Mathematica
    nxt[{n_, a_}] := {n + 1, If[EvenQ[n], a + GCD[n+1, a], a + GCD[n-1, a]]};
    A167494 = DeleteCases[Differences[Transpose[NestList[nxt, {1, 2}, 10^7]][[2]]], 1];
    Tally[A167494][[All, 1]] //. {a1___, a2_, a3___, a4_, a5___} /; a4 <= a2 :> {a1, a2, a3, a5} (* Jean-François Alcover, Oct 29 2018, using Harvey P. Dale's code for A167494 *)

Extensions

Simplified the definition to include all records; one term added by R. J. Mathar, Nov 05 2009
a(16) to a(21) from R. J. Mathar, Nov 19 2009
a(22) from Jean-François Alcover, Oct 29 2018

A167197 a(6) = 7, for n >= 7, a(n) = a(n - 1) + gcd(n, a(n - 1)).

Original entry on oeis.org

7, 14, 16, 17, 18, 19, 20, 21, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 116, 117, 120, 121, 122, 123, 124, 125, 126, 127, 128
Offset: 6

Views

Author

Vladimir Shevelev, Oct 30 2009, Nov 06 2009

Keywords

Comments

For every n >= 7, a(n) - a(n - 1) is 1 or prime. This Rowland-like "generator of primes" is different from A106108 (see comment to A167168) and from A167170. Note that, lim sup a(n) / n = 2, while lim sup A106108(n) / n = lim sup A167170(n) / n = 3.
Going up to a million, differences of two consecutive terms of this sequence gives primes about 0.009% of the time. The rest are 1's. [Alonso del Arte, Nov 30 2009]

Crossrefs

Programs

  • Maple
    A[6]:= 7:
    for n from 7 to 100 do A[n]:= A[n-1] + igcd(n,A[n-1]) od:
    seq(A[i],i=6..100); # Robert Israel, Jun 05 2016
  • Mathematica
    a[6] = 7; a[n_ /; n > 6] := a[n] = a[n - 1] + GCD[n, a[n - 1]]; Table[a[n], {n, 6, 58}]
  • Python
    from math import gcd
    def aupton(nn):
        alst = [7]
        for n in range(7, nn+1): alst.append(alst[-1] + gcd(n, alst[-1]))
        return alst
    print(aupton(68)) # Michael S. Branicky, Jul 14 2021

Extensions

Verified and edited by Alonso del Arte, Nov 30 2009

A167493 a(1) = 2; thereafter a(n) = a(n-1) + gcd(n, a(n-1)) if n is odd, and a(n) = a(n-1) + gcd(n-2, a(n-1)) if n is even.

Original entry on oeis.org

2, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 18, 19, 20, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 52, 53, 54, 55, 60, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 124, 125, 126
Offset: 1

Views

Author

Vladimir Shevelev, Nov 05 2009

Keywords

Comments

Conjectures. 1) For n >= 2, every difference a(n) - a(n-1) is 1 or prime; 2) Every record of differences a(n) - a(n-1) greater than 3 belongs to the sequence of the greater of twin primes (A006512).
Conjecture #1 above fails at n = 620757, with a(n) = 1241487 and a(n-1) = 1241460, difference = 27. Additionally, the terms of related A167495(m) quickly tend to index n/2. So for example, A167495(14) = 19141 is seen at n = 38284. - Bill McEachen, Jan 20 2023
It seems that, for n > 4, (3*n-3)/2 <= a(n) <= 2n - 3. Can anyone find a proof or disproof? - Charles R Greathouse IV, Jan 22 2023

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,If[EvenQ[n],a+GCD[n+1,a],a+GCD[n-1,a]]}; Transpose[ NestList[nxt,{1,2},70]][[2]] (* Harvey P. Dale, Dec 05 2015 *)
  • PARI
    lista(nn)=my(va = vector(nn)); va[1] = 2; for (n=2, nn, va[n] = if (n%2, va[n-1] + gcd(n, va[n-1]), va[n-1] + gcd(n-2, va[n-1]));); va; \\ Michel Marcus, Dec 13 2018
    
  • Python
    from math import gcd
    from itertools import count, islice
    def agen(): # generator of terms
        an = 2
        for n in count(2):
            yield an
            an = an + gcd(n, an) if n&1 else an + gcd(n-2, an)
    print(list(islice(agen(), 66))) # Michael S. Branicky, Jan 22 2023

Formula

For n > 3, n < a(n) < n*(n-1)/2. - Charles R Greathouse IV, Jan 22 2023

Extensions

More terms from Harvey P. Dale, Dec 05 2015

A167494 List of first differences of A167493 that are different from 1.

Original entry on oeis.org

2, 3, 3, 5, 3, 13, 5, 3, 31, 61, 7, 5, 3, 7, 139, 5, 3, 283, 5, 3, 571, 7, 5, 3, 1153, 5, 3, 2311, 31, 4651, 17, 5, 13, 3, 3, 5, 3, 9343, 5, 3, 11, 3, 59, 3, 29, 3, 19, 7, 5, 3, 7, 19, 5, 3, 17, 3, 113
Offset: 1

Views

Author

Vladimir Shevelev, Nov 05 2009

Keywords

Comments

Conjecture. All terms of the sequence are primes.
The conjecture is false: a(144)=27, a(146)=25, a(158)=45, etc., which are composite numbers. - Harvey P. Dale, Dec 05 2015

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,If[EvenQ[n],a+GCD[n+1,a],a+GCD[n-1,a]]}; DeleteCases[ Differences[ Transpose[NestList[nxt,{1,2},20000]][[2]]],1] (* Harvey P. Dale, Dec 05 2015 *)
  • PARI
    lista(nn) = {my(va = vector(nn)); va[1] = 2; for (n=2, nn, va[n] = if (n%2, va[n-1] + gcd(n, va[n-1]), va[n-1] + gcd(n-2, va[n-1]));); select(x->(x!=1), vector(nn-1, n, va[n+1] - va[n]));} \\ Michel Marcus, Dec 13 2018

A230504 Smallest prime in r(k) = r(k-1) + gcd(k,r(k-1)) with r(1) = n.

Original entry on oeis.org

2, 2, 3, 19, 5, 19, 7, 11, 11, 17, 11, 17, 13, 17, 17, 23, 17, 23, 19, 23, 23, 29, 23, 29, 29, 29, 29, 37, 29, 37, 31, 37, 37, 53, 53, 53, 37, 41, 41, 47, 41, 47, 43, 47, 47, 53, 47, 53, 53, 53, 53, 59, 53, 59, 59, 59, 59, 67, 59, 67, 61, 67, 67, 79, 79, 79
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 15 2013

Keywords

Comments

a(p) = p, p prime;
a(2*n-1) = A060264(n-1).

Examples

			n = 1 -> 1 + GCD(1,2) = 1+1 = 2 = prime(1) = a(1);
n = 2 = prime(1) = a(2);
n = 3 = prime(2) = a(3);
n = 4 -> 4+GCD(4,2) = 4+2 = 6 -> 6+GCD(6,3) = 6+3 = 9 -> 9+GCD(9,4) = 9+1 = 10 -> 10+GCD(10,5) = 10+5 = 15 -> 15+GCD(15,6) = 15+3 = 18 -> 18+GCD(18,7) = 18+1 = 19 = prime(8) = a(4) = A084662(7);
n = 5 = prime(3) = a(5) = A134736(1);
n = 6 -> 6+GCD(6,2) = 6+2 = 8 -> 8+GCD(8,3) = 8+1 = 9 -> 9+GCD(9,4) = 9+1 = 10 -> 10+GCD(10,5) = 10+5 = 15 -> 15+GCD(15,6) = 15+3 = 18 -> 18+GCD(18,7) = 18+1 = 19 = prime(8) = a(6);
n = 7 = prime(4) = a(7) = A106108(1);
n = 8 -> 8+GCD(8,2) = 8+2 = 10 -> 10+GCD(10,3) = 10+1 = 11 = prime(5) = a(8) = A084663(3);
n = 9 -> 9+GCD(9,2) = 9+2 = 11 = prime(5) = a(9);
n = 10 -> 10+GCD(10,2) = 10+2 = 12 -> 12+GCD(12,3) = 12+3 = 15 -> 15+GCD(15,4) = 15+1 = 16 -> 16+GCD(16,5) = 16+1 = 17 = prime(7) = a(10);
n = 11 = prime(5) = a(11);
n = 12 -> 12+GCD(12,2) = 12+2 = 14 -> 14+GCD(14,3) = 14+1 = 15 -> 15+GCD(15,4) = 15+1 = 16 -> 16+GCD(16,5) = 16+1 = 17 = prime(7) = a(10).
		

Crossrefs

Programs

  • Haskell
    a230504 n = head $ filter ((== 1) . a010051') rs where
                       rs = n : zipWith (+) rs (zipWith gcd rs [2..])
    
  • Mathematica
    a[n_] := Module[{r}, If[PrimeQ[n], n, r[1]=n; r[k_] := r[k] = r[k-1] + GCD[k, r[k-1]]; For[k=1, True, k++, If[PrimeQ[r[k]], Return[r[k]]]]]];
    Array[a, 66] (* Jean-François Alcover, Dec 03 2018 *)
  • Python
    from math import gcd
    from itertools import count, accumulate
    from sympy import isprime
    def A230504(n): return next(filter(isprime,accumulate(count(2),lambda x,y:x+gcd(x,y),initial=n))) # Chai Wah Wu, Mar 15 2023

A168143 a(17)=37; for n>=17, a(n)=3n-14 if gcd(n,a(n-1))>1 and all prime divisors of n more than 17; a(n)=a(n-1)+1, otherwise.

Original entry on oeis.org

37, 38, 43, 44, 45, 46, 55, 56, 57, 58, 59, 60, 61, 62, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157
Offset: 17

Views

Author

Vladimir Shevelev, Nov 19 2009

Keywords

Comments

a(n+1)-a(n)+14 is either 15 or a prime > 17. For a generalization, see the second Shevelev link. - Edited by Robert Israel, Aug 21 2017

Crossrefs

Programs

  • Maple
    A[17]:= 37:
    q:= convert(select(isprime,[$2..17]),`*`);
    for n from 18 to 100 do
      if igcd(n,A[n-1]) > 1 and igcd(n,q) = 1 then A[n]:= 3*n-14
        else A[n]:= A[n-1]+1 fi
    od:
    seq(A[i],i=17..100); # Robert Israel, Aug 21 2017
  • Mathematica
    nxt[{n_,a_}]:={n+1,If[GCD[n+1,a]>1&&FactorInteger[n+1][[1,1]]>17,3(n+1)-14,a+1]}; NestList[nxt,{17,37},60][[All,2]] (* Harvey P. Dale, Aug 15 2017 *)

Extensions

Corrected by Harvey P. Dale, Aug 15 2017

A141537 An example of a simple prime-generating algorithm similar to Rowland's (A106108) that is a particular instance of a more general algorithm (see comments).

Original entry on oeis.org

47, 227, 71, 359, 113, 563, 173, 839, 251, 1187, 347, 1607, 461, 2099, 593, 2663, 743, 3299, 911, 4007, 1097, 4787, 1301, 5639, 1523, 6563, 43, 7559, 43, 8627, 2297, 9767, 2591, 10979, 2903, 12263, 53, 13619, 3581, 41, 3947, 16547, 61, 18119, 4733, 19763, 5153, 47
Offset: 1

Views

Author

Aldrich Stevens (aldrichstevens(AT)msn.com), Aug 15 2008

Keywords

Comments

Below is a general algorithm that can be used as a starting point for finding similar ones and three examples.
Not every possibility will work (additional conditions may apply) but it is easy to see that there are an infinite number of algorithms much like Rowland's that will have hundreds or thousands of primes between the 1's before a composite is encountered.
1) Initialize the integers x, k, a and b and choose f(x), g(k).
2) Repeat indefinitely:
2a) x = x + 1;
2b) set c = GCD( f(x), f(x - 1) - a*g(k) );
2c) if c > 1, then c is a term of the sequence and k = k + b.
The present sequence is generated by using f(x) = x^2 - x + 41, g(k) = k, x = 1, k = 2, a = 3 and b = 1.
Examples:
A) f(x) = 5*x^2 + 5*x + 1, g(k) = k, x = 1, k = 2, a = 10, b = 1. These values generate the sequence: 11, 31, 61, 101, 151, 211, 281, 19, 41, 29, 661, 11, 911, 1051, 1201, 1361, 1531, 59, 1901, ...
B) f(x) = x^2 - x + 41, g(k) = k, x = 1, k = 2, a = 3, b = 1. These values generate the sequence: 47, 227, 71, 359, 113, 563, 173, 839, 251,1187,347, 1607, 461,2099,593, 2663, 743,3299, 911, 4007, ...
C) f(x) = 5*x^2 + 5*x + 1, g(k) = k^2 - k + 41, x = 1, k = 2, a = 2, b = 1. These values generate the sequence: 11, 1979, 2549, 11,4691, 11, 8929, 29, 11, 22051, 41, 19, 48619, 61751, 11, 229, 11, 144779, 175141, 11, ...

References

  • Eric S. Rowland, A simple prime-generating recurrence, Abstracts Amer. Math. Soc., 29 (No. 1, 2008), p. 50 (Abstract 1035-11-986).

Crossrefs

Programs

  • Mathematica
    Module[{k = 2, c, f}, f[x_] := x^2 - x + 41; Table[If[(c = GCD[f[x], f[x - 1] - 3*k]) > 1, k++; c, Nothing], {x, 12000}]] (* Paolo Xausa, Jan 31 2025 *)

Extensions

Edited by Paolo Xausa, Jan 31 2025
Previous Showing 11-20 of 23 results. Next