cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A175574 Decimal expansion of sqrt(Pi) / (Gamma(3/4))^2.

Original entry on oeis.org

1, 1, 8, 0, 3, 4, 0, 5, 9, 9, 0, 1, 6, 0, 9, 6, 2, 2, 6, 0, 4, 5, 3, 3, 7, 9, 4, 0, 5, 5, 8, 4, 8, 8, 5, 8, 7, 2, 3, 3, 7, 1, 6, 6, 3, 4, 8, 8, 1, 4, 4, 7, 2, 9, 9, 5, 1, 5, 8, 6, 4, 3, 9, 9, 4, 0, 4, 3, 0, 4, 1, 8, 0, 7, 2, 0, 7, 1, 5, 7, 9, 4, 9, 7, 8, 4, 5, 8, 6, 1, 6, 1, 9, 5, 8, 0, 7, 9, 5, 4, 2, 0, 9, 4, 5
Offset: 1

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

Entry 34 c of chapter 11 of Ramanujan's second notebook.
This constant is also the ratio T(Pi/2)/T(0), where T(Pi/2) is the exact pendulum period for an amplitude of Pi/2 and T(0) the approximate period 2*Pi*sqrt(L/g) for small angles. - Jean-François Alcover, Aug 05 2014

Examples

			1.18034059901609622604533794..
		

Crossrefs

Programs

  • MATLAB
    sqrt(pi)/gamma(3/4)^2 % Altug Alkan, Dec 05 2015
  • Maple
    sqrt(Pi)/GAMMA(3/4)^2 ; evalf(%) ;
  • Mathematica
    First@ RealDigits[N[Sqrt@ Pi/Gamma[3/4]^2, 120]] (* Michael De Vlieger, Dec 06 2015 *)
  • PARI
    sqrt(Pi)/gamma(3/4)^2 \\ Altug Alkan, Dec 05 2015
    

Formula

Equals A002161 /A068465^2.
Equals 2F1([1/2,1/2],[1],1/2) = 1/agm(1, sqrt(1/2)) = gamma(1/4)^2/(2*Pi^(3/2)).
Equals 2*sqrt(2)*K(-1)/Pi, where K is the complete elliptic integral of the first kind, K(-1) being A085565. - Jean-François Alcover, Jun 03 2014
Equals Product_{k>=1} (1-(-1)^k/(2*k)) = 3/2 * 3/4 * 7/6 * 7/8 * 11/10 * 11/12 * ... . - Richard R. Forberg, Dec 05 2015
Reciprocal of A096427. Equals ( Sum_{n = -inf..inf} exp(-Pi*n^2) )^2, a rapidly converging series. For example, summing from n = -5 to n = 5 gives the constant correct to 49 decimal places. - Peter Bala, Mar 06 2019
Equals Sum_{k>=0} binomial(2*k,k)^2/2^(5*k). - Amiram Eldar, Aug 26 2020
Equals (3/2)*hypergeom([-1/4, 3/4], [3/2], 1). - Peter Bala, Mar 04 2022
Equals A175573^2. - Amiram Eldar, Jul 04 2023

Extensions

A-number typo for sqrt(Pi) corrected by R. J. Mathar, Aug 01 2010

A113477 Decimal expansion of Gamma(1/3)^3/(2^(4/3)*Pi).

Original entry on oeis.org

2, 4, 2, 8, 6, 5, 0, 6, 4, 7, 8, 8, 7, 5, 8, 1, 6, 1, 1, 8, 1, 9, 9, 4, 1, 6, 8, 9, 7, 8, 0, 9, 3, 1, 2, 4, 8, 5, 5, 5, 0, 3, 4, 8, 4, 4, 8, 7, 4, 9, 0, 9, 2, 7, 4, 4, 1, 6, 6, 2, 9, 4, 1, 8, 8, 0, 5, 4, 0, 5, 6, 8, 7, 3, 6, 1, 7, 6, 9, 1, 7, 4, 4, 5, 4, 6, 7, 2, 7, 2, 7, 0, 8, 8, 8, 3, 5, 4, 4, 3, 8, 3, 9, 0, 7
Offset: 0

Views

Author

Benoit Cloitre, Jan 08 2006

Keywords

Comments

This number is transcendental from a result of Schneider on elliptic integrals.

Examples

			2.428650647887581611819....
		

Crossrefs

Cf. A085565.

Programs

  • Maple
    Beta(1/6, 1/2)/3: evalf(%, 106); # Peter Luschny, Apr 15 2024
  • Mathematica
    RealDigits[Gamma[1/3]^3/(Pi*2^(4/3)), 10, 5001][[1]] (* G. C. Greubel, Mar 12 2017 *)
  • PARI
    gamma(1/3)^3/2^(4/3)/Pi

Formula

Equals Integral_{x>=1} dx/sqrt(4*x^3-4).
Equals 2*Integral_{x=0..1} dx/sqrt(1-x^6). - Takayuki Tatekawa, Apr 15 2024
Equals Beta(1/6, 1/2) / 3. - Peter Luschny, Apr 15 2024

A154743 Decimal expansion of 2^(1/4) - 2^(-1/4), the ordinate of the point of bisection of the arc of the unit lemniscate (x^2 + y^2)^2 = x^2 - y^2 in the first quadrant.

Original entry on oeis.org

3, 4, 8, 3, 1, 0, 6, 9, 9, 7, 4, 9, 0, 0, 6, 5, 2, 3, 6, 8, 6, 3, 7, 4, 4, 9, 4, 3, 2, 7, 2, 6, 1, 0, 2, 0, 2, 5, 2, 9, 3, 7, 8, 3, 0, 1, 0, 7, 0, 3, 2, 9, 0, 2, 2, 0, 5, 7, 7, 6, 1, 3, 8, 7, 4, 4, 5, 4, 1, 9, 1, 3, 2, 7, 3, 0, 1, 4, 9, 2, 0, 0, 5, 6, 4, 5, 7, 3, 4, 0, 3
Offset: 0

Views

Author

Stuart Clary, Jan 14 2009

Keywords

Comments

A quartic integer with denominator 2: the positive root of 2x^4 + 8x^2 - 1 = 0.

Examples

			0.348310699749006523686374494327...
		

References

  • C. L. Siegel, Topics in Complex Function Theory, Volume I: Elliptic Functions and Uniformization Theory, Wiley-Interscience, 1969, page 5

Crossrefs

Cf. A154739 for the abscissa and A154747 for the radius vector.
Cf. A154744, A154745 and A154746 for the continued fraction and the numerators and denominators of the convergents.
Cf. A085565 for 1.311028777..., the first-quadrant arc length of the unit lemniscate.

Programs

  • Magma
    [2^(1/4) - 2^(-1/4)]; // G. C. Greubel, Nov 05 2017
  • Mathematica
    nmax = 1000; First[ RealDigits[ 2^(1/4) - 2^(-1/4), 10, nmax] ]
  • PARI
    sqrtn(2, 4) - sqrtn(2, -4) \\ Michel Marcus, Dec 10 2016
    
  • PARI
    polrootsreal(2*x^4+8*x^2-1)[2] \\ Charles R Greathouse IV, Nov 07 2017
    

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A225119 Decimal expansion of Integral_{x=0..Pi/2} sin(x)^(3/2) dx.

Original entry on oeis.org

8, 7, 4, 0, 1, 9, 1, 8, 4, 7, 6, 4, 0, 3, 9, 9, 3, 6, 8, 2, 1, 6, 1, 3, 1, 9, 6, 6, 3, 0, 3, 7, 3, 1, 3, 7, 8, 9, 4, 2, 5, 1, 6, 5, 0, 4, 7, 7, 2, 0, 7, 7, 2, 0, 9, 3, 8, 9, 4, 0, 5, 6, 7, 9, 3, 3, 5, 9, 6, 8, 6, 2, 3, 5, 6, 8, 0, 4, 7, 5, 0, 0, 7, 6, 7, 6, 5, 1, 7, 7, 6, 5, 3, 8, 0, 9, 6, 9, 7, 8
Offset: 0

Views

Author

Jean-François Alcover, Apr 29 2013

Keywords

Examples

			0.87401918476403993682161319663037313789425165047720772093894...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 195.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant p. 102 and Section 6.1 Gauss' Lemniscate Constant p. 422.

Crossrefs

Programs

  • Maple
    evalf((1/3)*sqrt(2)*EllipticK(1/sqrt(2)), 120); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    RealDigits[1/3*Sqrt[2]*EllipticK[1/2], 10, 100][[1]]
  • PARI
    sqrt(Pi)*gamma(1/4)/(6*gamma(3/4)) \\ G. C. Greubel, Apr 01 2017
    
  • PARI
    ellK(sqrt(1/2))*sqrt(2)/3 \\ Charles R Greathouse IV, Feb 04 2025

Formula

Equals 1/3 * sqrt(2) * ellipticK(1/2), (defined as in Mathematica).
Equals sqrt(2)/6 * Pi * hypergeom([1/2,1/2],[1],1/2).
Equals gamma(1/4)^2/(6*sqrt(2*Pi)).
Equals sqrt(Pi)*gamma(1/4)/(6*gamma(3/4)).
Equals Integral_{0..1} (1-x^2)^(1/4) dx.
Equals Integral_{0..1} sqrt(1-x^4) dx. - Charles R Greathouse IV, Aug 21 2017
Equals (2/3)*A085565. - Peter Bala, Oct 27 2019
Equals A062539/3. - Hugo Pfoertner, Dec 15 2024

A371824 Decimal expansion of Pi^(1/2)*Gamma(1/10)/(5*Gamma(3/5)).

Original entry on oeis.org

2, 2, 6, 4, 6, 1, 7, 3, 9, 5, 0, 4, 3, 1, 5, 0, 7, 4, 4, 2, 9, 1, 1, 8, 8, 9, 9, 0, 3, 1, 3, 9, 9, 2, 6, 0, 1, 3, 9, 8, 3, 2, 7, 0, 9, 2, 6, 5, 0, 6, 7, 5, 0, 9, 0, 4, 8, 1, 2, 2, 8, 7, 8, 7, 5, 0, 6, 2, 4, 0, 8, 5, 5, 4, 2, 5, 1, 0, 5, 8, 0, 2, 9, 2, 2, 4, 9, 9, 8, 3, 4, 7, 4, 8, 4, 0, 0, 7, 2, 0, 1, 4, 5, 4, 1, 4, 6, 0, 7, 6, 5
Offset: 1

Views

Author

Takayuki Tatekawa, Apr 07 2024

Keywords

Comments

Constants from generalized Pi integrals: the case of n=10.

Examples

			2.264617395043150744291188990313...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2*Sqrt[Pi]/10*Gamma[1/10]/Gamma[3/5], 10, 5001][[1]]
    RealDigits[GoldenRatio * Gamma[1/5] * Gamma[2/5]^2 / (2^(6/5) * Sqrt[5] * Pi), 10, 120][[1]] (* Vaclav Kotesovec, Apr 07 2024 *)

Formula

Equals 2*Integral_{x=0..1} dx/sqrt(1-x^10).
Equals phi * Gamma(1/5) * Gamma(2/5)^2 / (2^(6/5) * sqrt(5) * Pi), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Apr 07 2024

A378128 Decimal expansion of 2/L, where L is the lemniscate constant (A062539).

Original entry on oeis.org

7, 6, 2, 7, 5, 9, 7, 6, 3, 5, 0, 1, 8, 1, 3, 1, 8, 8, 0, 6, 2, 3, 2, 5, 9, 8, 0, 9, 6, 3, 6, 1, 5, 7, 9, 3, 2, 9, 2, 6, 2, 9, 2, 3, 7, 3, 4, 8, 0, 7, 2, 9, 1, 5, 2, 1, 7, 0, 7, 1, 5, 9, 8, 2, 6, 4, 4, 2, 2, 6, 9, 2, 9, 5, 6, 2, 5, 6, 1, 9, 2, 1, 9, 5, 4, 6, 6, 1, 4, 6
Offset: 0

Views

Author

Paolo Xausa, Nov 17 2024

Keywords

Examples

			0.76275976350181318806232598096361579329262923734807...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Sqrt[8]*Gamma[3/4]^2/Pi^(3/2), 10, 100]]

Formula

Equals 1/A085565.
Equals 2*sqrt(2)*Gamma(3/4)^2/Pi^(3/2) = A010466*A175575.
Equals Product_{k >= 1} b(k), where b(1) = sqrt(1/2) and, for k >= 2, b(k) = sqrt(1/2 + (1/2)/b(k-1)).

A243340 Decimal expansion of 4*L/(3*Pi), a constant related to the asymptotic evaluation of the number of primes of the form a^2+b^4, where L is Gauss' lemniscate constant.

Original entry on oeis.org

1, 1, 1, 2, 8, 3, 5, 7, 8, 8, 8, 9, 8, 7, 6, 4, 2, 4, 8, 3, 7, 5, 2, 3, 9, 6, 4, 3, 7, 3, 2, 0, 6, 2, 4, 1, 1, 9, 9, 1, 9, 9, 0, 6, 8, 4, 6, 5, 3, 7, 9, 6, 0, 0, 3, 2, 6, 6, 4, 3, 6, 4, 9, 3, 4, 7, 1, 5, 7, 5, 9, 9, 0, 2, 7, 9, 3, 6, 8, 5, 4, 9, 1, 5, 9, 5, 8, 8, 2, 1, 3, 8, 0, 1, 7, 0, 0, 4, 3, 2, 1, 7, 2, 0, 9
Offset: 1

Views

Author

Jean-François Alcover, Jun 03 2014

Keywords

Examples

			1.11283578889876424837523964373206241199199...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag, p. 140, Entry 25.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant, p. 102.

Crossrefs

Cf. A062539 (L), A076390, A085565, A225119 (L/3).

Programs

  • Mathematica
    L = Pi^(3/2)/(Sqrt[2]*Gamma[3/4]^2); RealDigits[4*L/(3*Pi), 10, 103] // First
  • PARI
    2*sqrt(2*Pi)/(3*gamma(3/4)^2) \\ Stefano Spezia, Nov 27 2024

Formula

Equals 2*sqrt(2*Pi)/(3*Gamma(3/4)^2).
From Peter Bala, Mar 24 2024: (Start)
An infinite family of continued fraction expansions for this constant can be obtained from Berndt, Entry 25, by setting n = 1/2 and x = 4*k + 3 for k >= 0.
For example, taking k = 0 and k = 1 yields
4*L/(3*Pi) = 1 + 1/(6 + (5*7)/(6 + (9*11)/(6 + (13*15)/(6 + ... + (4*n + 1)*(4*n + 3)/(6 + ... ))))) and
4*L/(3*Pi) = 8/(7 + (1*3)/(14 + (5*7)/(14 + (9*11)/(14 + (13*15)/(14 + ... + (4*n + 1)*(4*n + 3)/(14 + ... )))))).
Equals (2/3) * 1/A076390. (End)

A371930 Decimal expansion of Pi^(1/2)*Gamma(1/14)/(7*Gamma(4/7)).

Original entry on oeis.org

2, 1, 9, 1, 4, 5, 0, 2, 4, 5, 2, 0, 1, 0, 7, 8, 5, 3, 3, 9, 4, 6, 2, 6, 4, 8, 7, 0, 3, 1, 1, 7, 4, 9, 8, 8, 0, 4, 3, 3, 1, 0, 3, 9, 5, 1, 7, 8, 9, 2, 5, 8, 6, 7, 0, 6, 5, 7, 1, 1, 5, 9, 4, 3, 5, 3, 3, 3, 3, 3, 9, 1, 0, 7, 2, 1, 2, 6, 0, 7, 2, 7, 7, 7, 2, 3, 5, 1, 5, 7
Offset: 1

Views

Author

Takayuki Tatekawa, Apr 12 2024

Keywords

Comments

Constants from generalized Pi integrals: the case of n=14.
In general, for k > 0, Integral_{x=0..1} 1/sqrt(1 - x^k) dx = 2^(2/k) * Gamma(1 + 1/k)^2 / Gamma(1 + 2/k) = 2^(2/k - 1) * Gamma(1/k)^2 / (k*Gamma(2/k)). - Vaclav Kotesovec, Apr 15 2024

Examples

			2.191450245201078533946264870311...
		

Crossrefs

Programs

  • Maple
    Beta(1/14, 1/2) / 7: evalf(%, 90); # Peter Luschny, Apr 14 2024
  • Mathematica
    RealDigits[Sqrt[Pi]/7*Gamma[1/14]/Gamma[4/7], 10, 5001][[1]]

Formula

Equals 2*Integral_{x=0..1} dx/sqrt(1-x^14).
Equals Beta(1/14, 1/2) / 7. - Peter Luschny, Apr 14 2024
Equals Gamma(1/14)^2 / (7 * 2^(6/7) * Gamma(1/7)). - Vaclav Kotesovec, Apr 15 2024

A371929 Decimal expansion of Pi^(1/2)*Gamma(1/12)/(6*Gamma(7/12)).

Original entry on oeis.org

2, 2, 2, 2, 1, 5, 8, 6, 0, 3, 9, 6, 6, 4, 1, 4, 4, 6, 6, 9, 1, 5, 5, 8, 5, 3, 4, 3, 9, 2, 7, 2, 7, 7, 6, 1, 9, 0, 3, 3, 4, 5, 9, 7, 5, 1, 1, 4, 2, 5, 7, 7, 5, 0, 5, 3, 6, 9, 9, 9, 6, 2, 4, 1, 9, 4, 2, 8, 8, 3, 4, 0, 9, 1, 8, 4, 1, 3, 4, 0, 3, 9, 6, 2, 5, 8, 4, 2, 0
Offset: 1

Views

Author

Takayuki Tatekawa, Apr 12 2024

Keywords

Comments

Constants from generalized Pi integrals: the case of n=12.

Examples

			2.2221586039664144669155853439....
		

Crossrefs

Programs

  • Maple
    Beta(1/12, 1/2) / 6: evalf(%, 89); # Peter Luschny, Apr 14 2024
  • Mathematica
    RealDigits[Sqrt[Pi]/6*Gamma[1/12]/Gamma[7/12], 10, 5001][[1]]
    RealDigits[(1 + Sqrt[3]) * Gamma[1/4]^2 / (4 * 3^(3/4) * Sqrt[Pi]), 10, 120][[1]] (* Vaclav Kotesovec, Apr 15 2024 *)

Formula

Equals 2*Integral_{x=0..1} dx/sqrt(1-x^12).
Equals Beta(1/12, 1/2) / 6. - Peter Luschny, Apr 14 2024
Equals (1 + sqrt(3)) * Gamma(1/4)^2 / (4 * 3^(3/4) * sqrt(Pi)). - Vaclav Kotesovec, Apr 15 2024

A372327 Decimal expansion of Pi^(1/2)*Gamma(1/18)/(9*Gamma(5/9)).

Original entry on oeis.org

2, 1, 4, 9, 9, 9, 5, 4, 5, 8, 4, 9, 2, 0, 4, 7, 2, 3, 3, 9, 1, 2, 2, 2, 9, 4, 5, 6, 6, 3, 6, 5, 0, 8, 7, 5, 6, 3, 8, 7, 4, 8, 3, 1, 5, 1, 5, 7, 3, 7, 7, 8, 7, 9, 5, 6, 1, 7, 4, 7, 2, 8, 0, 3, 9, 8, 5, 7, 2, 7, 3, 5, 9, 2, 5, 4, 1, 7, 4, 9, 6, 1, 0, 4, 4, 4, 3, 5, 7, 5, 0, 0, 8, 3, 9, 7, 7, 8, 6, 5, 2, 6, 9, 6, 6, 9, 6, 8, 9, 2, 8
Offset: 1

Views

Author

Takayuki Tatekawa, Apr 28 2024

Keywords

Comments

Constant from generalized Pi integrals: the case of n=18.

Examples

			2.14999545849204723391222945664...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[Pi]/9*Gamma[1/18]/Gamma[5/9], 10, 5001][[1]]

Formula

Equals 2*Integral_{x=0..1} dx/sqrt(1-x^18).
Equals Gamma(1/18)^2 / (9 * 2^(8/9) * Gamma(1/9)). - Vaclav Kotesovec, Apr 29 2024
Previous Showing 11-20 of 24 results. Next