cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-86 of 86 results.

A080860 a(n) = 10*n^2 + 5*n + 1.

Original entry on oeis.org

1, 16, 51, 106, 181, 276, 391, 526, 681, 856, 1051, 1266, 1501, 1756, 2031, 2326, 2641, 2976, 3331, 3706, 4101, 4516, 4951, 5406, 5881, 6376, 6891, 7426, 7981, 8556, 9151, 9766, 10401, 11056, 11731, 12426, 13141, 13876, 14631, 15406, 16201, 17016, 17851
Offset: 0

Views

Author

Paul Barry, Feb 23 2003

Keywords

Comments

The old definition of this sequence was "Generalized polygonal numbers".
Column T(n,5) of A080853.
Sequence found by reading the line from 1, in the direction 1, 16, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Sep 10 2011

Crossrefs

Programs

  • Mathematica
    Table[10n^2+5n+1,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,16,51},50] (* Harvey P. Dale, Aug 05 2014 *)
  • PARI
    a(n)=10*n^2+5*n+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = C(5,0) + C(5,1)*n + C(5,2)*n^2.
G.f.: (C(4,0) + (C(6,2) - 2)*x + C(4,2)*x^2)/(1-x)^3 = (1 + 13*x + 6*x^2)/(1-x)^3.
a(n) = 20*n + a(n-1) - 5 with n > 0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
From Elmo R. Oliveira, Oct 31 2024: (Start)
E.g.f.: exp(x)*(1 + 15*x + 10*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Sum_{n>=0} a(n)/n! = 26*e. - Davide Rotondo, Feb 15 2025

Extensions

Definition replaced with the closed form by Bruno Berselli, Jan 16 2013

A287143 Expansion of x*(1 + 3*x + x^2)/((1 - x)^5*(1 + x)^4).

Original entry on oeis.org

0, 1, 4, 9, 21, 35, 65, 95, 155, 210, 315, 406, 574, 714, 966, 1170, 1530, 1815, 2310, 2695, 3355, 3861, 4719, 5369, 6461, 7280, 8645, 9660, 11340, 12580, 14620, 16116, 18564, 20349, 23256, 25365, 28785, 31255, 35245, 38115, 42735, 46046, 51359, 55154, 61226, 65550, 72450, 77350, 85150, 90675, 99450, 105651, 115479
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1 + 3 x + x^2)/((1 - x)^5 (1 + x)^4), {x, 0, 52}], x]
    LinearRecurrence[{1, 4, -4, -6, 6, 4, -4, -1, 1}, {0, 1, 4, 9, 21, 35, 65, 95, 155}, 53]

Formula

G.f.: x*(1 + 3*x + x^2)/((1 - x)^5*(1 + x)^4).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9).
Generalized 4-dimensional figurate numbers (A002418): (5*n - 1)*binomial(n + 2,3)/4, n = 0,+1,-3,+2,-4,+3,-5, ...
Convolution of the sequences A027656 and A085787.
a(n) = (2*n+3+(-1)^n)*(2*n+7+(-1)^n)*(5*(2*n^2+10*n+3)-3*(2*n+5)*(-1)^n)/3072. - Luce ETIENNE, Nov 18 2017

A292850 Lucas numbers that are also generalized heptagonal numbers.

Original entry on oeis.org

1, 4, 7, 18
Offset: 1

Views

Author

Tomohiro Yamada, Sep 25 2017

Keywords

Comments

Intersection of A000032 and A085787.
Except 4, these are also ordinary heptagonal numbers.
All terms are shown, as confirmed by Srinivasa Rao (2002).
All (generalized) g-gonal numbers in Lucas sequences up to g=20 have been determined, see Tengely (2009).

Crossrefs

Cf. A248506 (triangular Lucas Numbers).

A377224 Number of ways to write n as x*(5*x+1) + y*(5*y+1)/2 + z*(5*z+1)/2, where x,y,z are integers with y*(5*y+1) <= z*(5*z+1).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 3, 1, 2, 3, 2, 3, 2, 2, 1, 3, 1, 3, 4, 1, 3, 2, 4, 2, 6, 2, 4, 5, 4, 3, 5, 3, 3, 4, 2, 2, 4, 1, 3, 3, 3, 3, 7, 1, 6, 6, 6, 3, 8, 4, 3, 7, 3, 7, 4, 4, 2, 4, 1, 5, 6, 1, 6, 7, 4, 4, 9, 6, 5, 8, 3, 6, 5, 3, 4, 5, 3, 3, 4, 1, 9, 6, 5, 3, 9, 5, 6, 9, 6, 8, 10, 3, 3, 9, 4, 7, 7, 4, 7, 5, 4
Offset: 0

Views

Author

Zhi-Wei Sun, Nov 13 2024

Keywords

Comments

Conjecture 1: a(n) = 0 only for n = 1. Also, a(n) = 1 only for n = 0, 2, 3, 5, 7, 14, 16, 19, 37, 43, 58, 61, 79.
This has been verified for n <= 2*10^6.
Conjecture 2: Let N be the set of all nonnegative integers. Then
{x*(5*x+1) + y*(5*y+1)/2 + 5*z*(5*z+1)/2: x,y,z are integers} = N\{1,5},
{x*(5*x+1) + y*(5*y+1)/2 + 3*z*(5*z+1)/2: x,y,z are integers} = N\{1,5,32},
{x*(5*x+1) + y*(5*y+1)/2 + 2*z*(5*z+1): x,y,z are integers} = N\{1,5,70},
and
{x*(5*x+1)/2 + y*(5*y+1)/2 + z*(5*z+1)/2: x,y,z are integers} = N\{1,10,19,94}.
Conjecture 3: We have
{x*(5*x+3) + y*(5*y+3)/2 + 3*z*(5*z+3)/2: x,y,z are integers} = N\{31,77},
{x*(5*x+3) + y*(5*y+3)/2 + 5*z*(5*z+3): x,y,z are integers} = N\{10,16},
and
{x*(5*x+3)/2 + y*(5*y+3)/2 + 5*z*(5*z+3)/2: x,y,z are integers} = N\{3,15,29,44}.

Examples

			a(14) = 1 with 14 = 0*(5*0+1) + 1*(5*1+1)/2 + 2*(5*2+1)/2.
a(37) = 1 with 37 = (-1)*(5*(-1)+1) + (-2)*(5*(-2)+1)/2 + 3*(5*3+1)/2.
a(58) = 1 with 58 = (-2)*(5*(-2)+1) + (-1)*(5*(-1)+1)/2 + (-4)*(5*(-4)+1)/2.
a(79) = 1 with 79 = -4*(5*(-4)+1) + 0*(5*0+1)/2 + 1*(5*1+1)/2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[40(n-x(5x+1)-y(5y+1)/2)+1],r=r+1],{x,-Floor[(Sqrt[20n+1]+1)/10],(Sqrt[20n+1]-1)/10},{y,-Floor[(Sqrt[20(n-x(5x+1))+1]+1)/10],Floor[(Sqrt[20(n-x(5x+1))+1]-1)/10]}];tab=Append[tab,r],{n,0,100}];Print[tab]

A235670 Square array read by antidiagonals upwards in which the n-th column gives the partial sums of the n-th column of A211970.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 8, 4, 2, 1, 14, 7, 3, 2, 1, 24, 12, 5, 3, 2, 1, 40, 19, 8, 4, 3, 2, 1, 64, 30, 12, 6, 4, 3, 2, 1, 100, 45, 17, 9, 5, 4, 3, 2, 1, 154, 67, 24, 13, 7, 5, 4, 3, 2, 1, 232, 97, 34, 17, 10, 8, 6, 5, 4, 3, 2, 1, 344, 139, 47, 22, 14, 8, 6, 5, 4, 3, 2, 1
Offset: 0

Views

Author

Omar E. Pol, Jan 13 2014

Keywords

Comments

The column 0 is related to A008794 in the same way as the column k is related to the generalized (k+4)-gonal numbers, for k >= 1. For more information see A195152 and A211970.

Examples

			Array begins:
1,     1,   1,   1,   1,   1,  1,  1,  1,  1,  1,...
2,     2,   2,   2,   2,   2,  2,  2,  2,  2,  2,...
4,     4,   3,   3,   3,   3,  3,  3,  3,  3,  3,...
8,     7,   5,   4,   4,   4,  4,  4,  4,  4,  4,...
14,   12,   8,   6,   5,   5,  5,  5,  5,  5,  5,...
24,   19,  12,   9,   7,   6,  6,  6,  6,  6,  6,...
40,   30,  17,  13,  10,   8,  7,  7,  7,  7,  7,...
64,   45,  24,  17,  14,  11,  9,  8,  8,  8,  8,...
100,  67,  34,  22,  18,  15, 12, 10,  9,  9,  9,...
154,  97,  47,  29,  22,  19, 16, 13, 11, 10, 10,...
232, 139,  63,  39,  27,  23, 20, 17, 14, 12, 11,...
344, 195,  84,  51,  34,  27, 24, 21, 18, 15, 13,...
504, 272, 112,  65,  44,  32, 28, 25, 22, 19, 16,...
728, 383, 147,  81,  56,  39, 32, 29, 26, 23, 20,...
...
		

Crossrefs

Column 1 is A015128, the partial sums of A211971.
Column 2 is A000070, the partial sums of A000041.
Column 3 is A233969, the partial sums of A006950.

Formula

T(n,k) = Sum_{j=0..n} A211970(j,k), (n>=0, k>=0).

A292472 Generalized heptagonal numbers that are also Fibonacci numbers.

Original entry on oeis.org

0, 1, 13, 34, 55
Offset: 1

Views

Author

Felix Fröhlich, Sep 17 2017

Keywords

Comments

Intersection of A000045 and A085787.
Exactly five such numbers exist (cf. Srinivasa Rao, 2003).
All (generalized) g-gonal numbers in Fibonacci sequences up to g=20 have been determined (cf. Tengely, 2009). - Tomohiro Yamada, Sep 26 2017

Crossrefs

Cf. A292850 (Generalized heptagonal Lucas numbers).

Programs

  • Mathematica
    Intersection[Array[(# (# + 1)/2 - 1)/5 &, 50, 0], Array[Fibonacci, 50, 0]] (* Michael De Vlieger, Sep 18 2017 *)
  • PARI
    a085787(n) = (5*(-n\2)^2 - (-n\2)*3*(-1)^n) / 2
    is_a000045(n) = my(x=0); while(fibonacci(x) < n, x++); if(fibonacci(x)==n, return(1)); 0
    for(n=0, 60, if(is_a000045(a085787(n)), print1(a085787(n), ", ")))
Previous Showing 81-86 of 86 results.