cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A181918 The value of r at the bifurcation point of the first period-12 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 5, 8, 2, 8, 1, 1, 7, 7, 9, 5, 2, 5, 1, 0, 2, 0, 1, 8, 3, 9, 4, 3, 2, 0, 6, 4, 9, 6, 5, 8, 6, 9, 0, 2, 2, 8, 2, 7, 4, 6, 0, 2, 5, 2, 3, 4, 6, 1, 5, 1, 1, 7, 6, 7, 5, 3, 8, 6, 8, 6, 7, 1, 5, 9, 0, 8, 9, 2, 1, 5, 8, 4, 1, 4, 6, 6, 3, 3, 6, 9, 5, 3, 3, 1, 5, 8, 3, 2, 8, 6, 1, 8, 1, 8, 5, 0, 9, 8, 8
Offset: 1

Views

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 2010*2 = 4020 polynomial

Examples

			3.5828117795...
		

Crossrefs

A181919 The value of r at the bifurcation point of the first period-13 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 6, 7, 9, 7, 0, 3, 8, 4, 9, 8, 0, 3, 2, 9, 4, 7, 3, 0, 2, 7, 1, 7, 2, 8, 9, 8, 8, 1, 5, 7, 7, 3, 5, 7, 8, 2, 1, 1, 6, 7, 5, 6, 9, 1, 5, 0, 3, 3, 2, 5, 1, 5, 9, 3, 9, 6, 9, 6, 3, 4, 9, 5, 7, 8, 3, 3, 0, 7, 5, 2, 8, 5, 7, 4, 5, 0, 9, 8, 2, 6, 2, 4, 8, 2, 1, 0, 6, 9, 0, 5, 1, 7, 2, 2, 2, 4, 0, 3, 8
Offset: 1

Views

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 4095*2 = 8190 polynomial.

Examples

			3.6797038498...
		

Crossrefs

A181912 The value of r at the bifurcation point of the first period-5 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 7, 4, 1, 1, 2, 0, 7, 5, 6, 6, 3, 2, 4, 4, 0, 2, 0, 6, 3, 0, 7, 2, 9, 3, 8, 2, 3, 6, 7, 0, 9, 9, 8, 3, 7, 1, 0, 0, 0, 5, 0, 8, 4, 3, 2, 6, 5, 6, 2, 2, 5, 2, 5, 5, 2, 4, 9, 8, 1, 1, 5, 6, 5, 0, 7, 3, 0, 9, 0, 6, 8, 4, 5, 5, 7, 0, 1, 1, 8, 9, 4, 4, 7, 5, 0, 9, 8, 6, 2, 2, 9, 2, 2, 0, 0, 2, 5, 0, 4
Offset: 1

Views

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 15*2 = 30 polynomial.

Examples

			3.7411207566...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1 + Sqrt[1 + T] /. NSolve[1291467969 - 313083144 T + 149426046 T^2 - 88548768 T^3 + 58697100 T^4 - 26978787 T^5 + 11351480 T^6 - 4444924 T^7 + 1519712 T^8 - 462764 T^9 + 118147 T^10 - 24008 T^11 + 3838 T^12 - 448 T^13 + 32 T^14 - T^15 == 0, T, Reals, WorkingPrecision -> 200][[1]][[1]]][[1]]

A181913 The value of r at the bifurcation point of the first period-7 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 7, 0, 2, 1, 5, 4, 9, 2, 8, 1, 5, 3, 5, 8, 8, 7, 7, 0, 2, 2, 2, 6, 1, 2, 3, 1, 2, 4, 2, 6, 4, 1, 3, 6, 5, 5, 9, 1, 8, 6, 0, 3, 4, 2, 5, 9, 4, 6, 7, 0, 0, 8, 1, 7, 5, 7, 5, 0, 4, 2, 7, 8, 9, 9, 3, 5, 4, 6, 2, 6, 6, 2, 0, 1, 5, 8, 4, 7, 0, 9, 4, 8, 9, 6, 9, 1, 3, 1, 9, 8, 8, 4, 4, 4, 9, 7, 1, 2, 6
Offset: 1

Views

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 63*2 = 126 polynomial.

Examples

			3.702154928...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1 + Sqrt[1 + T] /.  NSolve[97862157334118736160267353892330031361 - 24275883989858911295570196314376441888 T + 11949756847721247033090755550100031472 T^2 - 7305759525507048491687489710934851842 T^3 + 4979912078948645588349153608449721856 T^4 - 3626559126667087845228068253830569728 T^5 + 2762422187660818660072532819743957008 T^6 - 1880399068065596812679449750312116489 T^7 + 1211937495049324668386707923551814144 T^8 - 759866924055411176816609501610145824 T^9 + 466557599052858501899389873590498576 T^10 - 280965824140635821336538113950238208 T^11 + 165486490562715543623266844910996960 T^12 - 95328733468347624721143436596991728 T^13 + 53730737569188242850960902675061540 T^14 - 29631735433275573295736684905520448 T^15 + 15982002519220233506297359288643328 T^16 - 8426732734596962888735943308790072 T^17 + 4341578043750972227945942898034432 T^18 - 2184193663643426076323203313845088 T^19 + 1072045107586559381111681621669072 T^20 - 512897616845631175409335289338708 T^21 + 239007878643078614755697662563584 T^22 - 108415793383957757795350567428064 T^23 + 47846270482094728117141329426032 T^24 - 20533661180243125068599265318144 T^25 + 8564906198781819799124804441280 T^26 - 3470264291680473250164651552944 T^27 + 1364870535759255877272510765950 T^28 - 520676891296255096870756895040 T^29 + 192488968788190123648373004064 T^30 - 68893036110679144584159460492 T^31 + 23845858487001866959614915840 T^32 - 7973063091544280406837942464 T^33 + 2572118763623299179804574640 T^34 - 799578831968317708137874814 T^35 + 239196982314145129630174464 T^36 - 68763448836715397230901728 T^37 + 18967378806716848507574128 T^38 - 5011787964028065103857408 T^39 + 1266306625250424841996640 T^40 - 305348843999288091901136 T^41 + 70117811645069434371412 T^42 - 15296768944400171831616 T^43 + 3162019501419003256064 T^44 - 617525327585232743224 T^45 + 113570706028361676288 T^46 - 19599347048769496032 T^47 + 3161153679144274672 T^48 - 474387152691155748 T^49 + 65902567592614400 T^50 - 8426269030832672 T^51 + 984947439372048 T^52 - 104425099694592 T^53 + 9947578647040 T^54 - 841756889488 T^55 + 62385936393 T^56 - 3978343968 T^57 + 213336304 T^58 - 9328642 T^59 + 318464 T^60 - 7936 T^61 + 128 T^62 - T^63 == 0, T, Reals, WorkingPrecision -> 200][[1]][[1]]][[1]]

A118746 Decimal expansion of onset of logistic map 7-bifurcation.

Original entry on oeis.org

3, 7, 0, 1, 6, 4, 0, 7, 6, 4, 1, 6, 0, 3, 4, 9, 5, 8, 1, 8, 2, 4, 6, 4, 3, 7, 8, 9, 8, 4, 0, 8, 8, 9, 2, 2, 0, 1, 4, 4, 2, 9, 1, 5, 8, 9, 5, 1, 5, 2, 0, 6, 4, 4, 3, 1, 2, 3, 4, 5, 6, 2, 5, 7, 3, 0, 7, 9, 1, 9, 3, 7, 3, 5, 5, 2, 9, 5, 9, 7, 7, 8, 2, 4, 0, 5, 1, 6, 2, 8, 0, 2, 4, 2, 0, 0, 8, 7, 0, 1, 8, 1, 3, 6, 9
Offset: 1

Views

Author

Eric W. Weisstein, Apr 28 2006

Keywords

Comments

Algebraic of order 114.

Examples

			3.7016407641603495818...
		

Crossrefs

A118454 Algebraic degree of the onset of the logistic map n-bifurcation.

Original entry on oeis.org

1, 1, 2, 2, 22, 40, 114, 12, 480, 944, 2026, 3918, 8166, 16104, 32630, 240, 131038, 260928, 524250, 1046418, 2096706, 4190168, 8388562, 16768200, 33554240, 67092432, 134216136, 268402446, 536870854, 1073672968, 2147483586, 65280, 8589928346, 17179606976, 34359737478
Offset: 1

Views

Author

Eric W. Weisstein, Apr 28 2006

Keywords

Comments

a(2^n) is A087046(n).

Examples

			The onsets begin at 1, 3, 1+2*sqrt(2), 1+sqrt(6), ...
		

Crossrefs

Programs

  • Mathematica
    degRp[n_] := Sum[MoebiusMu[n/d] 2^(d - 1), {d, Divisors[n]}]; degRo[n_] := degRp[n]*2 - Sum[EulerPhi[n/d] degRp[d], {d, Divisors[n]}]; Table[If[n <= 2, 1, 2 If[2^Round[Log2[n]] == n, degRp[n/2], degRo[n]]], {n, 1, 35}] (* Cheng Zhang, Apr 02 2012 *)

Extensions

More terms from Cheng Zhang, Apr 02 2012

A087046 Algebraic order of r_n, the value of r in the logistic map that corresponding to the onset of the period 2^n-cycle.

Original entry on oeis.org

1, 2, 12, 240, 65280, 4294901760, 18446744069414584320, 340282366920938463444927863358058659840, 115792089237316195423570985008687907852929702298719625575994209400481361428480
Offset: 1

Views

Author

Eric W. Weisstein, Aug 04 2003

Keywords

Crossrefs

Cf. A051179 (partial sums).

Programs

  • Mathematica
    Table[If[n <= 1, 1, 2^(2^(n - 1)) - 2^(2^(n - 2))], {n, 1, 10}] (* Cheng Zhang, Apr 02 2012 *)
  • PARI
    a(n) = 1<<(1<<(n-1)) - 1<<(1<<(n-2)); \\ Kevin Ryde, Jan 18 2024

Formula

a(n) = 2^(2^(n - 1)) - 2^(2^(n - 2)) with n>1, a(1)=1. - Cheng Zhang, Apr 02 2012
Sum_{n>=1} 1/a(n) = 1 + A346192. - Amiram Eldar, Jul 18 2021

Extensions

More terms from Cheng Zhang, Apr 03 2012

A176213 Decimal expansion of 2+sqrt(6).

Original entry on oeis.org

4, 4, 4, 9, 4, 8, 9, 7, 4, 2, 7, 8, 3, 1, 7, 8, 0, 9, 8, 1, 9, 7, 2, 8, 4, 0, 7, 4, 7, 0, 5, 8, 9, 1, 3, 9, 1, 9, 6, 5, 9, 4, 7, 4, 8, 0, 6, 5, 6, 6, 7, 0, 1, 2, 8, 4, 3, 2, 6, 9, 2, 5, 6, 7, 2, 5, 0, 9, 6, 0, 3, 7, 7, 4, 5, 7, 3, 1, 5, 0, 2, 6, 5, 3, 9, 8, 5, 9, 4, 3, 3, 1, 0, 4, 6, 4, 0, 2, 3, 4, 8, 1, 8, 5, 9
Offset: 1

Views

Author

Klaus Brockhaus, Apr 12 2010

Keywords

Comments

Continued fraction expansion of 2+sqrt(6) is A010694.
a(n) = A010464(n) = A086180(n) for n > 1, a(1) = 4.

Examples

			2+sqrt(6) = 4.44948974278317809819...
		

Crossrefs

Cf. A010464 (decimal expansion of sqrt(6)), A086180 (decimal expansion of 1+sqrt(6)), A010694 (repeat 4, 2).

Programs

  • Mathematica
    RealDigits[2+Sqrt[6],10,120][[1]] (* Harvey P. Dale, Aug 19 2018 *)

A379469 Decimal expansion of (1 + sqrt(6))/(3*sqrt(2)).

Original entry on oeis.org

8, 1, 3, 0, 5, 2, 5, 2, 9, 5, 8, 5, 1, 4, 1, 6, 0, 5, 9, 7, 6, 0, 9, 6, 9, 0, 1, 2, 0, 3, 5, 7, 3, 8, 0, 2, 0, 7, 5, 8, 8, 0, 3, 9, 7, 1, 6, 6, 2, 8, 4, 8, 8, 8, 2, 1, 4, 7, 1, 5, 6, 1, 6, 1, 4, 9, 0, 9, 9, 7, 5, 2, 0, 4, 6, 6, 1, 7, 8, 5, 2, 1, 6, 8, 7, 7, 9, 9, 8, 4, 6, 4, 0, 3, 5, 6, 4, 5, 4, 0
Offset: 0

Views

Author

Stefano Spezia, Dec 23 2024

Keywords

Comments

This constant gives an upper bound to the Steiner ratio of a regular tetrahedron.

Examples

			0.81305252958514160597609690120357380207588039716628...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.6, p. 505.

Crossrefs

Programs

  • Mathematica
    RealDigits[(1+Sqrt[6])/(3Sqrt[2]),10,100][[1]]

Formula

Minimal polynomial: 324*x^4 - 252*x^2 + 25. - Stefano Spezia, Aug 03 2025
Previous Showing 11-19 of 19 results.