A366319
Numbers k such that the sum of prime indices of k is not twice the maximum prime index of k, meaning A056239(k) != 2 * A061395(k).
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76
Offset: 1
The prime indices of 90 are {1,2,2,3}, with sum 8 and twice maximum 6, so 90 is in the sequence.
Partitions of this type are counted by
A086543.
For length instead of maximum we have the complement of
A340387.
A334201 adds up all prime indices except the greatest.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Max[prix[#]]!=Total[prix[#]]/2&]
A348617
Numbers whose sum of prime indices is twice their negated alternating sum.
Original entry on oeis.org
1, 10, 39, 88, 115, 228, 259, 306, 517, 544, 620, 783, 793, 870, 1150, 1204, 1241, 1392, 1656, 1691, 1722, 1845, 2369, 2590, 2596, 2775, 2944, 3038, 3277, 3280, 3339, 3498, 3692, 3996, 4247, 4440, 4935, 5022, 5170, 5226, 5587, 5644, 5875, 5936, 6200, 6321
Offset: 1
The terms and their prime indices begin:
1: ()
10: (3,1)
39: (6,2)
88: (5,1,1,1)
115: (9,3)
228: (8,2,1,1)
259: (12,4)
306: (7,2,2,1)
517: (15,5)
544: (7,1,1,1,1,1)
620: (11,3,1,1)
783: (10,2,2,2)
793: (18,6)
870: (10,3,2,1)
1150: (9,3,3,1)
1204: (14,4,1,1)
1241: (21,7)
1392: (10,2,1,1,1,1)
1656: (9,2,2,1,1,1)
1691: (24,8)
These partitions are counted by
A001523 up to 0's.
The reverse nonnegative version is
A349160, counted by
A006330 up to 0's.
A346697 adds up odd-indexed prime indices.
A346698 adds up even-indexed prime indices.
Cf.
A000984,
A001700,
A028260,
A045931,
A120452,
A195017,
A257991,
A257992,
A262977,
A325698,
A344619,
A345958.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
Select[Range[1000],Total[primeMS[#]]==-2*ats[primeMS[#]]&]
A352143
Numbers whose prime indices and conjugate prime indices are all odd.
Original entry on oeis.org
1, 2, 5, 8, 11, 17, 20, 23, 31, 32, 41, 44, 47, 59, 67, 68, 73, 80, 83, 92, 97, 103, 109, 124, 125, 127, 128, 137, 149, 157, 164, 167, 176, 179, 188, 191, 197, 211, 227, 233, 236, 241, 257, 268, 269, 272, 275, 277, 283, 292, 307, 313, 320, 331, 332, 347, 353
Offset: 1
The terms together with their prime indices begin:
1: {}
2: {1}
5: {3}
8: {1,1,1}
11: {5}
17: {7}
20: {1,1,3}
23: {9}
31: {11}
32: {1,1,1,1,1}
41: {13}
44: {1,1,5}
47: {15}
59: {17}
67: {19}
68: {1,1,7}
73: {21}
80: {1,1,1,1,3}
The restriction to primes is
A031368.
These partitions appear to be counted by
A053253.
For even instead of odd conjugate parts we get
A066208^2.
The first condition alone (all odd indices) is
A066208, counted by
A000009.
A238745 gives the Heinz number of the conjugate prime signature.
A352140 = even indices and odd multiplicities, counted by
A055922 aerated.
Cf.
A000290,
A000701,
A000720,
A028260,
A045931,
A046682,
A055396,
A061395,
A195017,
A241638,
A325698,
A325700.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Select[Range[100],And@@OddQ/@primeMS[#]&&And@@OddQ/@conj[primeMS[#]]&]
A366321
Numbers m whose prime indices have even sum k such that k/2 is not a prime index of m.
Original entry on oeis.org
1, 3, 7, 10, 13, 16, 19, 21, 22, 27, 28, 29, 34, 36, 37, 39, 43, 46, 48, 52, 53, 55, 57, 61, 62, 64, 66, 71, 75, 76, 79, 81, 82, 85, 87, 88, 89, 90, 91, 94, 100, 101, 102, 107, 108, 111, 113, 115, 116, 117, 118, 120, 129, 130, 131, 133, 134, 136, 138, 139, 144
Offset: 0
The prime indices of 84 are y = {1,1,2,4}, with even sum 8; but 8/2 = 4 is in y, so 84 is not in the sequence.
The terms together with their prime indices begin:
1: {}
3: {2}
7: {4}
10: {1,3}
13: {6}
16: {1,1,1,1}
19: {8}
21: {2,4}
22: {1,5}
27: {2,2,2}
28: {1,1,4}
29: {10}
34: {1,7}
36: {1,1,2,2}
A086543 lists numbers with at least one odd prime index, counted by
A366322.
A300063 ranks partitions of odd numbers.
A366319 ranks partitions of n not containing n/2.
A366321 ranks partitions of 2k that do not contain k.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],EvenQ[Total[prix[#]]]&&FreeQ[prix[#],Total[prix[#]]/2]&]
A366530
Heinz numbers of integer partitions of even numbers with at least one odd part.
Original entry on oeis.org
4, 10, 12, 16, 22, 25, 28, 30, 34, 36, 40, 46, 48, 52, 55, 62, 64, 66, 70, 75, 76, 82, 84, 85, 88, 90, 94, 100, 102, 108, 112, 115, 116, 118, 120, 121, 130, 134, 136, 138, 144, 146, 148, 154, 155, 156, 160, 165, 166, 172, 175, 184, 186, 187, 190, 192, 194, 196
Offset: 1
The terms together with their prime indices are the following. Each multiset has even sum and at least one odd part.
4: {1,1}
10: {1,3}
12: {1,1,2}
16: {1,1,1,1}
22: {1,5}
25: {3,3}
28: {1,1,4}
30: {1,2,3}
34: {1,7}
36: {1,1,2,2}
40: {1,1,1,3}
46: {1,9}
48: {1,1,1,1,2}
52: {1,1,6}
55: {3,5}
62: {1,11}
64: {1,1,1,1,1,1}
Not requiring at least one odd part gives
A300061.
Allowing partitions of odd numbers gives
A366322.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100], EvenQ[Total[prix[#]]]&&Or@@OddQ/@prix[#]&]
A353188
Number of partitions of n that contain at least one composite part.
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 3, 4, 8, 12, 19, 27, 41, 56, 80, 109, 150, 199, 268, 350, 461, 596, 771, 984, 1258, 1589, 2007, 2514, 3145, 3905, 4846, 5973, 7356, 9010, 11020, 13418, 16315, 19756, 23890, 28788, 34639, 41548, 49767, 59441, 70899, 84354, 100221, 118803, 140645, 166153, 196035, 230853, 271512
Offset: 0
For n = 6 the partitions of 6 that contain at least one composite parts are [6], [4, 2] and [4, 1, 1]. There are three of these partitions so a(6) = 3.
Cf.
A000041,
A002096,
A002808,
A023895,
A034891,
A047967,
A085642,
A086543,
A116449,
A144300,
A204389.
-
a(n) = my(nb=0); forpart(p=n, if (#select(x->((x>1) && !isprime(x)), Vec(p)) >=1, nb++);); nb; \\ Michel Marcus, Jun 23 2022
A365826
Number of strict integer partitions of n that are not of length 2 and do not contain n/2.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 20, 20, 30, 31, 45, 46, 66, 68, 93, 97, 130, 136, 179, 188, 242, 256, 325, 344, 432, 459, 568, 606, 742, 793, 963, 1031, 1240, 1331, 1589, 1707, 2026, 2179, 2567, 2766, 3240, 3493, 4072, 4393, 5094, 5501, 6351
Offset: 0
The a(6) = 1 through a(12) = 7 strict partitions:
(6) (7) (8) (9) (10) (11) (12)
(4,2,1) (5,2,1) (4,3,2) (6,3,1) (5,4,2) (5,4,3)
(5,3,1) (7,2,1) (6,3,2) (7,3,2)
(6,2,1) (4,3,2,1) (6,4,1) (7,4,1)
(7,3,1) (8,3,1)
(8,2,1) (9,2,1)
(5,3,2,1) (5,4,2,1)
The complement is counted by
A365659.
A182616 counts partitions of 2n that do not contain n, strict
A365828.
Cf.
A004526,
A005408,
A008967,
A035363,
A058984,
A086543,
A100959,
A344415,
A365376,
A365377,
A365543.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Tuples[#,2],n]&]], {n,0,30}]
A366318
Heinz numbers of integer partitions that are of length 2 or begin with n/2, where n is the sum of all parts.
Original entry on oeis.org
4, 6, 9, 10, 12, 14, 15, 21, 22, 25, 26, 30, 33, 34, 35, 38, 39, 40, 46, 49, 51, 55, 57, 58, 62, 63, 65, 69, 70, 74, 77, 82, 84, 85, 86, 87, 91, 93, 94, 95, 106, 111, 112, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 154, 155, 158, 159
Offset: 1
The terms together with their prime indices begin:
4: {1,1} 38: {1,8} 77: {4,5}
6: {1,2} 39: {2,6} 82: {1,13}
9: {2,2} 40: {1,1,1,3} 84: {1,1,2,4}
10: {1,3} 46: {1,9} 85: {3,7}
12: {1,1,2} 49: {4,4} 86: {1,14}
14: {1,4} 51: {2,7} 87: {2,10}
15: {2,3} 55: {3,5} 91: {4,6}
21: {2,4} 57: {2,8} 93: {2,11}
22: {1,5} 58: {1,10} 94: {1,15}
25: {3,3} 62: {1,11} 95: {3,8}
26: {1,6} 63: {2,2,4} 106: {1,16}
30: {1,2,3} 65: {3,6} 111: {2,12}
33: {2,5} 69: {2,9} 112: {1,1,1,1,4}
34: {1,7} 70: {1,3,4} 115: {3,9}
35: {3,4} 74: {1,12} 118: {1,17}
The partitions with these Heinz numbers are counted by
A238628.
The complement of the second condition is
A366319, counted by
A086543.
A001222 counts prime factors with multiplicity.
A334201 adds up all prime indices except the greatest.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Length[prix[#]]==2||MemberQ[prix[#],Total[prix[#]]/2]&]
A366527
Number of integer partitions of 2n containing at least one even part.
Original entry on oeis.org
0, 1, 3, 7, 16, 32, 62, 113, 199, 339, 563, 913, 1453, 2271, 3496, 5308, 7959, 11798, 17309, 25151, 36225, 51748, 73359, 103254, 144363, 200568, 277007, 380437, 519715, 706412, 955587, 1286762, 1725186, 2303388, 3063159, 4058041, 5356431, 7045454, 9235841
Offset: 0
The a(1) = 1 through a(4) = 16 partitions:
(2) (4) (6) (8)
(22) (42) (44)
(211) (222) (62)
(321) (332)
(411) (422)
(2211) (431)
(21111) (521)
(611)
(2222)
(3221)
(4211)
(22211)
(32111)
(41111)
(221111)
(2111111)
This is the even bisection of
A047967.
A006477 counts partitions w/ at least one odd and even part, ranks
A366532.
-
Table[Length[Select[IntegerPartitions[2n],Or@@EvenQ/@#&]],{n,0,15}]
A366529
Heinz numbers of integer partitions of even numbers with at least one even part.
Original entry on oeis.org
3, 7, 9, 12, 13, 19, 21, 27, 28, 29, 30, 36, 37, 39, 43, 48, 49, 52, 53, 57, 61, 63, 66, 70, 71, 75, 76, 79, 81, 84, 87, 89, 90, 91, 101, 102, 107, 108, 111, 112, 113, 116, 117, 120, 129, 130, 131, 133, 138, 139, 144, 147, 148, 151, 154, 156, 159, 163, 165
Offset: 1
The terms together with their prime indices begin:
3: {2}
7: {4}
9: {2,2}
12: {1,1,2}
13: {6}
19: {8}
21: {2,4}
27: {2,2,2}
28: {1,1,4}
29: {10}
30: {1,2,3}
36: {1,1,2,2}
37: {12}
39: {2,6}
43: {14}
48: {1,1,1,1,2}
The complement is counted by
A047967.
Not requiring an even part gives
A300061.
For odd instead of even we have
A300063.
Not requiring even sum gives
A324929.
Partitions of this type are counted by
A366527.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],EvenQ[Total[prix[#]]]&&Or@@EvenQ/@prix[#]&]
Comments