A156740
Triangle T(n, k, m) = round( Product_{j=0..m} binomial(2*(n+j), 2*(k+j))/binomial( 2*(n-k+j), 2*j) ), where m = 7, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 153, 1, 1, 4845, 4845, 1, 1, 74613, 2362745, 74613, 1, 1, 735471, 358664691, 358664691, 735471, 1, 1, 5311735, 25533510145, 393216056233, 25533510145, 5311735, 1, 1, 30421755, 1056158828725, 160324910200455, 160324910200455, 1056158828725, 30421755, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 153, 1;
1, 4845, 4845, 1;
1, 74613, 2362745, 74613, 1;
1, 735471, 358664691, 358664691, 735471, 1;
1, 5311735, 25533510145, 393216056233, 25533510145, 5311735, 1;
-
A156740:= func< n,k | Round( (&*[Binomial(2*(n+j), 2*(k+j))/Binomial(2*(n-k+j), 2*j): j in [0..7]]) ) >;
[A156740(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 19 2021
-
b[n_, k_]:= Binomial[2*n, 2*k];
T[n_, k_, m_]:= Round[Product[b[n+j, k+j]/b[n-k+j, j], {j,0,m}]];
Table[T[n, k, 7], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 19 2021 *)
-
def A156740(n, k): return round( product( binomial(2*(n+j), 2*(k+j))/binomial(2*(n-k+j), 2*j) for j in (0..7)) )
flatten([[A156740(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 19 2021
Definition corrected to give integral terms and edited by
G. C. Greubel, Jun 19 2021
A156741
Triangle T(n, k, m) = round( Product_{j=0..m} binomial(2*(n+j), 2*(k+j))/binomial( 2*(n-k+j), 2*j) ), where m = 8, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 190, 1, 1, 7315, 7315, 1, 1, 134596, 5181946, 134596, 1, 1, 1562275, 1106715610, 1106715610, 1562275, 1, 1, 13123110, 107904771975, 1985447804340, 107904771975, 13123110, 1, 1, 86493225, 5974000557525, 1275875833357125, 1275875833357125, 5974000557525, 86493225, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 190, 1;
1, 7315, 7315, 1;
1, 134596, 5181946, 134596, 1;
1, 1562275, 1106715610, 1106715610, 1562275, 1;
1, 13123110, 107904771975, 1985447804340, 107904771975, 13123110, 1;
-
A156741:= func< n,k | Round( (&*[Binomial(2*(n+j), 2*(k+j))/Binomial(2*(n-k+j), 2*j): j in [0..8]]) ) >;
[A156741(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 19 2021
-
b[n_, k_]:= Binomial[2*n, 2*k];
T[n_, k_, m_]:= Round[Product[b[n+j, k+j]/b[n-k+j, j], {j,0,m}]];
Table[T[n, k, 8], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 19 2021 *)
-
def A156741(n, k): return round( product( binomial(2*(n+j), 2*(k+j))/binomial(2*(n-k+j), 2*j) for j in (0..8)) )
flatten([[A156741(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 19 2021
Definition corrected to give integral terms and edited by
G. C. Greubel, Jun 19 2021
A201461
Triangle read by rows: n-th row (n>=0) gives coefficients of the polynomial ((x+1)^(2^n) + (x-1)^(2^n))/2.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 28, 70, 28, 1, 1, 120, 1820, 8008, 12870, 8008, 1820, 120, 1, 1, 496, 35960, 906192, 10518300, 64512240, 225792840, 471435600, 601080390, 471435600, 225792840, 64512240, 10518300, 906192, 35960, 496, 1
Offset: 0
The first few polynomials are:
1,
x^2 + 1,
x^4 + 6*x^2 + 1,
x^8 + 28*x^6 + 70*x^4 + 28*x^2 + 1,
x^16 + 120*x^14 + 1820*x^12 + 8008*x^10 + 12870*x^8 + 8008*x^6 + 1820*x^4 + 120*x^2 + 1.
The triangle of coefficients begins:
[0] [1]
[1] [1, 0, 1]
[2] [1, 0, 6, 0, 1]
[3] [1, 0, 28, 0, 70, 0, 28, 0, 1]
[4] [1, 0, 120, 0, 1820, 0, 8008, 0, 12870, 0, 8008, 0, 1820, 0, 120, 0, 1]
The triangle of nonzero coefficients begins:
[0] 1
[1] 1, 1
[2] 1, 6, 1
[3] 1, 28, 70, 28, 1
[4] 1, 120, 1820, 8008, 12870, 8008, 1820, 120, 1
[5] 1, 496, 35960, 906192, 10518300, 64512240, 225792840, 471435600, 601080390, 471435600, 225792840, 64512240, 10518300, 906192, 35960, 496, 1
...
-
Flatten[Table[Binomial[2^n,2k],{n,0,6},{k,0,2^(n-1)}]] (* Indranil Ghosh, Feb 22 2017 *)
-
row(n) = my(v = Vec(((x+1)^(2^n)+(x-1)^(2^n))/2)); vector(#v\2 + 1, k, v[2*k-1]); \\ Michel Marcus, Jan 14 2017
-
T(n,k)=binomial(2^n,2*k);
for(n=0,5,for(k=0,2^(n-1),print1(T(n,k),", "));print()); \\ Joerg Arndt, Jan 15 2017
-
def A201461_polynomial(n): return expand(((x+1)^(2^n) + (x-1)^(2^n))/2)
for n in range(6): print(A201461_polynomial(n))
for n in range(6): print(A201461_polynomial(n).list()) # coefficients
for n in range(6): # depunched (not a mathematical operation)
if n == 0: print([1])
else: print(A201461_polynomial(n).list()[::2]) # Peter Luschny, Jan 11 2021
A109446
Binomial coefficients C(n,k) with n-k even, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 6, 1, 5, 10, 1, 1, 15, 15, 1, 7, 35, 21, 1, 1, 28, 70, 28, 1, 9, 84, 126, 36, 1, 1, 45, 210, 210, 45, 1, 11, 165, 462, 330, 55, 1, 1, 66, 495, 924, 495, 66, 1, 13, 286, 1287, 1716, 715, 78, 1, 1, 91, 1001, 3003, 3003, 1001, 91, 1, 15, 455, 3003, 6435, 5005
Offset: 0
Starred terms in Pascal's triangle (A007318), read by rows:
1*;
1, 1*;
1*, 2, 1*;
1, 3*, 3, 1*;
1*, 4, 6*, 4, 1*;
1, 5*, 10, 10*, 5, 1*;
1*, 6, 15*, 20, 15*, 6, 1*;
1, 7*, 21, 35*, 35, 21*, 7, 1*;
1*, 8, 28*, 56, 70*, 56, 28*, 8, 1*;
1, 9*, 36, 84*, 126, 126*, 84, 36*, 9, 1*;
Rows in A086645 (1; 1, 1; 1, 6, 1; ...) interspersed with rows in A103327 (1; 3, 1; 5, 10, 1; ...).
1; 1; 1, 1; 3, 1; 1, 6, 1; 5, 10, 1; 1, 15, 15, 1; 7, 35, 21, 1; ....
- Alois P. Heinz, Rows n = 0..200, flattened
- M. Bukata, R. Kulwicki, N. Lewandowski, L. Pudwell, J. Roth, and T. Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
-
T:= (n, k)-> binomial(n, 2*k+irem(n, 2)):
seq(seq(T(n, k), k=0..floor(n/2)), n=0..20); # Alois P. Heinz, Feb 07 2014
-
Flatten[ Table[ If[ EvenQ[n - k], Binomial[n, k], {}], {n, 0, 15}, {k, 0, n}]] (* Robert G. Wilson v *)
A156739
Triangle T(n, k, m) = round( Product_{j=0..m} binomial(2*(n+j), 2*(k+j))/binomial( 2*(n-k+j), 2*j) ), where m = 6, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 120, 1, 1, 3060, 3060, 1, 1, 38760, 988380, 38760, 1, 1, 319770, 103285710, 103285710, 319770, 1, 1, 1961256, 5226256926, 66199254396, 5226256926, 1961256, 1, 1, 9657700, 157843517260, 16494647553670, 16494647553670, 157843517260, 9657700, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 120, 1;
1, 3060, 3060, 1;
1, 38760, 988380, 38760, 1;
1, 319770, 103285710, 103285710, 319770, 1;
1, 1961256, 5226256926, 66199254396, 5226256926, 1961256, 1;
-
A156739:= func< n,k | Round( (&*[Binomial(2*(n+j), 2*(k+j))/Binomial(2*(n-k+j), 2*j): j in [0..6]]) ) >;
[A156739(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 18 2021
-
b[n_, k_]:= Binomial[2*n, 2*k];
T[n_, k_, m_]:= Round[Product[b[n+j, k+j]/b[n-k+j, j], {j,0,m}]];
Table[T[n, k, 6], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 18 2021 *)
-
def A156739(n, k): return round( product( binomial(2*(n+j), 2*(k+j))/binomial(2*(n-k+j), 2*j) for j in (0..6)) )
flatten([[A156739(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 18 2021
Definition corrected to give integral terms and edited by
G. C. Greubel, Jun 18 2021
A156742
Triangle T(n, k, m) = round( Product_{j=0..m} binomial(2*(n+j), 2*(k+j))/binomial( 2*(n-k+j), 2*j) ), where m = 9, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 231, 1, 1, 10626, 10626, 1, 1, 230230, 10590580, 230230, 1, 1, 3108105, 3097744650, 3097744650, 3108105, 1, 1, 30045015, 404255676825, 8758872997875, 404255676825, 30045015, 1, 1, 225792840, 29367745734600, 8590065627370500, 8590065627370500, 29367745734600, 225792840, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 231, 1;
1, 10626, 10626, 1;
1, 230230, 10590580, 230230, 1;
1, 3108105, 3097744650, 3097744650, 3108105, 1;
1, 30045015, 404255676825, 8758872997875, 404255676825, 30045015, 1;
-
A156742:= func< n,k | Round( (&*[Binomial(2*(n+j), 2*(k+j))/Binomial(2*(n-k+j), 2*j): j in [0..9]]) ) >;
[A156742(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 19 2021
-
T[n_, k_, m_]:= Round[Product[Binomial[2*(n+j), 2*(k+j)]/Binomial[2*(n-k+j), 2*j], {j,0,m}]];
Table[T[n, k, 9], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 19 2021 *)
-
def A156742(n, k): return round( product( binomial(2*(n+j), 2*(k+j))/binomial(2*(n-k+j), 2*j) for j in (0..9)) )
flatten([[A156742(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 19 2021
Definition corrected to give integral terms and edited by
G. C. Greubel, Jun 19 2021
A177808
Triangle T(n,m) = binomial(4*n, 4*m), 0 <= m <= n, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 70, 1, 1, 495, 495, 1, 1, 1820, 12870, 1820, 1, 1, 4845, 125970, 125970, 4845, 1, 1, 10626, 735471, 2704156, 735471, 10626, 1, 1, 20475, 3108105, 30421755, 30421755, 3108105, 20475, 1, 1, 35960, 10518300, 225792840, 601080390, 225792840, 10518300, 35960, 1, 1, 58905, 30260340, 1251677700, 7307872110, 7307872110, 1251677700, 30260340, 58905, 1
Offset: 0
1;
1, 1;
1, 70, 1;
1, 495, 495, 1;
1, 1820, 12870, 1820, 1;
1, 4845, 125970, 125970, 4845, 1;
1, 10626, 735471, 2704156, 735471, 10626, 1;
1, 20475, 3108105, 30421755, 30421755, 3108105, 20475, 1;
1, 35960, 10518300, 225792840, 601080390, 225792840, 10518300, 35960, 1;
1, 58905, 30260340, 1251677700, 7307872110, 7307872110, 1251677700,30260340, 58905, 1;
1, 91390, 76904685, 5586853480, 62852101650, 137846528820, 62852101650, 5586853480, 76904685, 91390, 1;
-
A177808 := proc(n,m) binomial(4*n,4*m) ; end proc: # R. J. Mathar, Dec 13 2010
-
t[n_, m_] = Binomial[n, 4*m];
Table[Table[t[n, m], {m, 0, Floor[n/4]}], {n, 0, 40, 4}];
Flatten[%]
A186432
Triangle associated with the set S of squares {0,1,4,9,16,...}.
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 30, 30, 1, 1, 56, 140, 56, 1, 1, 90, 420, 420, 90, 1, 1, 132, 990, 1848, 990, 132, 1, 1, 182, 2002, 6006, 6006, 2002, 182, 1, 1, 240, 3640, 16016, 25740, 16016, 3640, 240, 1, 1, 306, 6120, 37128, 87516, 87516, 37128, 6120, 306, 1, 1, 380, 9690, 77520, 251940, 369512, 251940, 77520, 9690, 380, 1
Offset: 0
Triangle begins
n/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....1
.2..|..1....12.....1
.3..|..1....30....30.....1
.4..|..1....56...140....56.....1
.5..|..1....90...420...420....90.....1
.6..|..1...132...990..1848...990...132.....1
.7..|..1...182..2002..6006..6006..2002...182.....1
...
-
Table[2 Binomial[2 n, 2 k] - Boole[Or[k == 0, k == n]], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, May 23 2017 *)
A371637
Triangle read by rows: T(n, k) = (-8)^k*binomial(2*n, 2*k)*Euler(2*k, 1/2).
Original entry on oeis.org
1, 1, 2, 1, 12, 20, 1, 30, 300, 488, 1, 56, 1400, 13664, 22160, 1, 90, 4200, 102480, 997200, 1616672, 1, 132, 9900, 450912, 10969200, 106700352, 172976960, 1, 182, 20020, 1465464, 66546480, 1618288672, 15740903360, 25518205568
Offset: 0
Triangle starts:
[0] 1;
[1] 1, 2;
[2] 1, 12, 20;
[3] 1, 30, 300, 488;
[4] 1, 56, 1400, 13664, 22160;
[5] 1, 90, 4200, 102480, 997200, 1616672;
[6] 1, 132, 9900, 450912, 10969200, 106700352, 172976960;
[7] 1, 182, 20020, 1465464, 66546480, 1618288672, 15740903360, 25518205568;
-
T := (n, k) -> (-8)^k*binomial(2*n, 2*k)*euler(2*k, 1/2):
seq(print(seq(T(n, k), k = 0..n)), n = 0..7);
-
Table[(-8)^k*Binomial[2*n, 2*k]*EulerE[2*k, 1/2], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Apr 17 2024 *)
-
def DelehamDelta(R, S, dim):
ring = PolynomialRing(ZZ, 'x')
x = ring.gen()
A = [R(k) + x * S(k) for k in range(dim)]
C = [ring(0)] + [ring(1) for i in range(dim)]
for k in range(1, dim + 1):
for n in range(k - 1, 0, -1):
C[n] = C[n-1] + C[n+1] * A[n-1]
yield list(C[1])
def A371637_triangle(dim):
a = lambda n: 1 - n % 2
b = lambda n: 2*(n + 1)^2
for row in DelehamDelta(a, b, dim): print(row)
A371637_triangle(8) # Peter Luschny, Apr 21 2024
A139459
Triangle read by rows: binomial(3*n,3*k), 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 20, 1, 1, 84, 84, 1, 1, 220, 924, 220, 1, 1, 455, 5005, 5005, 455, 1, 1, 816, 18564, 48620, 18564, 816, 1, 1, 1330, 54264, 293930, 293930, 54264, 1330, 1, 1, 2024, 134596, 1307504, 2704156, 1307504, 134596, 2024, 1, 1, 2925, 296010, 4686825, 17383860, 17383860, 4686825, 296010, 2925, 1
Offset: 0
First few rows of the triangle are:
[0] 1;
[1] 1, 1;
[2] 1, 20, 1;
[3] 1, 84, 84, 1;
[4] 1, 220, 924, 220, 1;
[5] 1, 455, 5005, 5005, 455, 1;
[6] 1, 816, 18564, 48620, 18564, 816, 1;
...
Row 5 = (1, 220, 924, 220, 1) = ConvOffs transform of (1, 20, 84, 220); where A006566 = (0, 1, 20, 84, 220, 455, ...).
-
Table[Binomial[3*n, 3*k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 01 2025 *)
Comments