cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A318976 Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(phi(k)/k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 2, 6, 32, 196, 1512, 13384, 135872, 1545744, 19441952, 268386784, 4018603008, 65021744704, 1127284876928, 20880206388864, 410781080941568, 8561002328678656, 188224613741879808, 4355496092560324096, 105752112730661347328, 2688539359466319184896
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 06 2018

Keywords

Comments

Convolution of A088009 and A000262.

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(EulerPhi[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
    nmax = 20; CoefficientList[Series[E^(x*(2 + x)/(1 - x^2)), {x, 0, nmax}], x] * Range[0, nmax]!

Formula

E.g.f.: exp(x*(2 + x)/(1 - x^2)).
a(n) ~ 2^(-3/4) * 3^(1/4) * exp(sqrt(6*n) - n - 1/2) * n^(n - 1/4).

A373620 Expansion of e.g.f. exp(x / (1 - x^2)^2).

Original entry on oeis.org

1, 1, 1, 13, 49, 481, 3841, 38221, 464353, 5368609, 82042561, 1151767981, 20242097041, 342921513793, 6705416722369, 133590317946541, 2880298682358721, 65597610230669761, 1556262483879791233, 39569880403136366029, 1030778206965403668721
Offset: 0

Views

Author

Seiichi Manyama, Jun 11 2024

Keywords

Crossrefs

Programs

  • Maple
    A373620 := proc(n)
        add(binomial(2*n-3*k-1,k)/(n-2*k)!,k=0..floor(n/2)) ;
        %*n! ;
    end proc:
    seq(A373620(n),n=0..80) ; # R. J. Mathar, Jun 11 2024
  • PARI
    a(n) = n!*sum(k=0, n\2, binomial(2*n-3*k-1, k)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(2*n-3*k-1,k)/(n-2*k)!.
a(n) == 1 mod 12.
a(n) ~ 2^(-1/6) * 3^(-1/2) * exp(1/48 + 2^(-5/3)*n^(1/3) + 3*2^(-4/3)*n^(2/3) - n) * n^(n - 1/6). - Vaclav Kotesovec, Jun 11 2024
D-finite with recurrence a(n) -a(n-1) -3*(n-1)*(n-2)*a(n-2) -3*(n-1)*(n-2)*a(n-3) +3*(n-1)*(n-2)*(n-3)*(n-4)*a(n-4) -(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*a(n-6)=0. - R. J. Mathar, Jun 11 2024

A113775 Number of sets of lists (cf. A000262) whose list sizes are not a multiple of 3.

Original entry on oeis.org

1, 1, 3, 7, 49, 321, 2131, 19783, 195777, 2101249, 25721731, 340358151, 4902173233, 75688032577, 1253701725459, 22347046050631, 418439924732161, 8318748086461953, 175769214730290307, 3871849719998940679, 89734800330818444721, 2187944831367633226561
Offset: 0

Views

Author

Vladeta Jovovic, Jan 19 2006

Keywords

Crossrefs

Programs

  • Maple
    nmax := 30: B := x*(1+x)/(1-x^3) : egf := 0 : for i from 0 to nmax do egf := convert(egf+taylor(B^i,x=0,nmax+1)/i!,polynom) : od: for i from 0 to nmax do printf("%d ", i!*coeftayl(egf,x=0,i)) ; od: # R. J. Mathar, Feb 06 2008
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(0=
          irem(j, 3), 0, a(n-j)*j!*binomial(n-1, j-1)), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 10 2016
  • Mathematica
    CoefficientList[Series[E^(x*(1+x)/(1-x^3)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 25 2013 *)

Formula

E.g.f.: exp(x*(1+x)/(1-x^3)).
a(n) = a(n-1) + 2*(n-1)*a(n-2) + 2*(n-3)*(n-2)*(n-1)*a(n-3) + 2*(n-3)*(n-2)*(n-1)*a(n-4) + (n-4)*(n-3)*(n-2)*(n-1)*a(n-5) - (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-6). - Vaclav Kotesovec, Sep 25 2013
a(n) ~ 6^(-1/4) * n^(n-1/4) * exp(2/3*sqrt(6*n)-n) * (1 - 43/(48*sqrt(6*n))). - Vaclav Kotesovec, Sep 25 2013

Extensions

2 more terms from R. J. Mathar, Feb 06 2008

A117347 Near-multiperfects with primes excluded, abs(sigma(m) mod m) <= log(m).

Original entry on oeis.org

4, 6, 8, 10, 16, 20, 28, 32, 64, 70, 88, 104, 110, 120, 128, 136, 152, 256, 464, 496, 512, 592, 650, 672, 884, 1024, 1155, 1888, 1952, 2048, 2144, 4030, 4096, 5830, 8128, 8192, 8384, 8925, 11096, 16384, 17816, 18632, 18904, 30240, 32128, 32445, 32760, 32768
Offset: 1

Views

Author

Walter Nissen, Mar 09 2006

Keywords

Comments

Sequences A117346 through A117350 are an attempt to improve on sequences A045768 through A045770, A077374, A087167, A087485 and A088007 through A088012 and related sequences (but not to replace them) by using a more significant definition of "near". E.g., is sigma(n) (where sigma is the sum-of-divisors function) really "near" a multiple of n, for n = 9? Or n = 18?

Examples

			70 is a term because sigma(70) = 144 = 2 * 70 + 4, while 4 < log(70) ~= 4.248.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B2.

Crossrefs

Formula

sigma(m) = k * m + r, abs(r) <= log(m).

Extensions

Offset corrected by Amiram Eldar, Mar 05 2020

A293486 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. Product_{i>0} Sum_{j=0..k} x^(j*(2*i-1))/j!.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 6, 0, 1, 1, 1, 6, 24, 0, 1, 1, 1, 7, 24, 120, 0, 1, 1, 1, 7, 24, 180, 720, 0, 1, 1, 1, 7, 25, 180, 1080, 5040, 0, 1, 1, 1, 7, 25, 180, 1200, 10080, 80640, 0, 1, 1, 1, 7, 25, 181, 1200, 10080, 90720, 725760, 0, 1, 1, 1, 7, 25
Offset: 0

Views

Author

Seiichi Manyama, Oct 10 2017

Keywords

Examples

			Square array begins:
   1,   1,   1,   1,   1, ...
   0,   1,   1,   1,   1, ...
   0,   0,   1,   1,   1, ...
   0,   6,   6,   7,   7, ...
   0,  24,  24,  24,  25, ...
   0, 120, 180, 180, 180, ...
		

Crossrefs

Columns k=0..3 give A000007, A293487, A293488, A293489.
Rows n=0 gives A000012.
Main diagonal gives A088009.
Cf. A293135.

A096965 Number of sets of even number of even lists, cf. A000262.

Original entry on oeis.org

1, 1, 1, 7, 37, 241, 2101, 18271, 201097, 2270017, 29668681, 410815351, 6238931821, 101560835377, 1765092183037, 32838929702671, 644215775792401, 13441862819232001, 293976795292186897, 6788407001443004647, 163735077313046119861, 4142654439686285737201
Offset: 0

Views

Author

Vladeta Jovovic, Aug 18 2004

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;  `if`(n<4, [1$3, 7][n+1], ((2*n-3)
          *a(n-1)+(n-1)*(2*n^2-8*n+7)*a(n-2) + (n-2)*(n-1)*(2*n-5)
          *a(n-3)-(n-4)*(n-3)*(n-2)^2*(n-1)*a(n-4))/(n-2))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 01 2021
  • Mathematica
    Drop[ Range[0, 20]! CoefficientList[ Series[ Exp[(x/(1 - x^2))]Cosh[x^2/(1 - x^2)], {x, 0, 20}], x], 1] (* Robert G. Wilson v, Aug 19 2004 *)

Formula

E.g.f.: exp(x/(1-x^2))*cosh(x^2/(1-x^2)).
a(n) = (n!*sum(m=floor((n+1)/2)..n, (binomial(n-1,2*m-n-1))/(2*m-n)!)). - Vladimir Kruchinin, Mar 10 2013
Recurrence: (n-2)*a(n) = (2*n-3)*a(n-1) + (n-1)*(2*n^2 - 8*n + 7)*a(n-2) + (n-2)*(n-1)*(2*n-5)*a(n-3) - (n-4)*(n-3)*(n-2)^2*(n-1)*a(n-4). - Vaclav Kotesovec, Sep 29 2013
a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n-1/4)/(2*sqrt(2)) * (1-5/(48*sqrt(n))). - Vaclav Kotesovec, Sep 29 2013
From Alois P. Heinz, Dec 01 2021: (Start)
a(n) = A000262(n) - A096939(n).
a(n) = |Sum_{k=0..n} (-1)^k * A349776(n,k)|. (End)

Extensions

More terms from Robert G. Wilson v, Aug 19 2004
a(0)=1 prepended by Alois P. Heinz, Dec 01 2021

A351933 Expansion of e.g.f. exp(x / (1 - x^2/2)).

Original entry on oeis.org

1, 1, 1, 4, 13, 61, 331, 1996, 14449, 109873, 971821, 8995636, 93329941, 1018571269, 12110589583, 151955795356, 2037757374241, 28837620752161, 430834395468889, 6777014821152868, 111663525724783741, 1930478057636642221, 34781068833200111731
Offset: 0

Views

Author

Seiichi Manyama, Feb 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 22; Range[0, m]! * CoefficientList[Series[Exp[x / (1 - x^2/2)], {x, 0, m}], x] (* Amiram Eldar, Feb 26 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x^2/2))))
    
  • PARI
    a(n) = if(n<3, 1, sum(k=0, (n-1)\2, (2*k+1)!/2^k*binomial(n-1, 2*k)*a(n-1-2*k)));

Formula

a(n) = Sum_{k=0..floor((n-1)/2)} (2*k+1)!/2^k * binomial(n-1,2*k) * a(n-1-2*k) for n > 2.
a(n) ~ n^(n - 1/4) / (2^(n/2 + 5/8) * exp(n - 2^(3/4)*sqrt(n))). - Vaclav Kotesovec, Mar 03 2022
Conjecture D-finite with recurrence +4*a(n) -4*a(n-1) -4*(n-1)*(n-2)*a(n-2) -2*(n-1)*(n-2)*a(n-3) +(n-1)*(n-2)*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Mar 09 2022
a(n) = n! * Sum_{k=0..floor(n/2)} binomial(n-k-1,k)/(2^k * (n-2*k)!). - Seiichi Manyama, Jun 08 2024

A373619 Expansion of e.g.f. exp(x / (1 - x^2)^(3/2)).

Original entry on oeis.org

1, 1, 1, 10, 37, 316, 2341, 21736, 237385, 2611792, 35911081, 476570656, 7654975021, 121021831360, 2196593121997, 40464132512896, 817485662059921, 17159299818547456, 382733978898335185, 8982388245979044352, 219867829220866999861, 5684505550914409716736
Offset: 0

Views

Author

Seiichi Manyama, Jun 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, binomial(3*n/2-2*k-1, k)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(3*n/2-2*k-1,k)/(n-2*k)!.
a(n) == 1 mod 9.
a(n) ~ 3^(1/5) * 5^(-1/2) * exp(3^(-1/5)*n^(1/5)/4 + 5*3^(-3/5)*n^(3/5)/2 - n) * n^(n - 1/5) * (1 - 1/(10*3^(4/5)*n^(1/5))). - Vaclav Kotesovec, Jun 11 2024

A373683 Expansion of e.g.f. exp(x / (1 - x^2)) / (1 - x^2).

Original entry on oeis.org

1, 1, 3, 13, 61, 441, 3031, 28813, 267513, 3088081, 36278731, 491262861, 6962025973, 108395586313, 1791145742751, 31601369155021, 594291393830641, 11740929829286433, 246910933786777363, 5406641472165854221, 125497950720670828461, 3018786042678264770521
Offset: 0

Views

Author

Seiichi Manyama, Jun 13 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, binomial(n-k, k)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(n-k,k)/(n-2*k)!.
a(n) == 1 (mod 2).

A096939 Number of sets of odd number of even lists, cf. A000262.

Original entry on oeis.org

0, 2, 6, 36, 260, 1950, 19362, 193256, 2326536, 29272410, 413257790, 6231230412, 101415565836, 1769925341366, 32734873484250, 646218442877520, 13404753632014352, 294656673023216946, 6775966692145553526
Offset: 1

Views

Author

Vladeta Jovovic, Aug 18 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[ Range[0, 20]! CoefficientList[ Series[ Exp[(x/(1 - x^2))] Sinh[x^2/(1 - x^2)], {x, 0, 20}], x], 1] (* Robert G. Wilson v, Aug 19 2004 *)

Formula

E.g.f.: exp(x/(1-x^2))*sinh(x^2/(1-x^2)).
Recurrence: (n-2)*a(n) = (2*n-3)*a(n-1) + (n-1)*(2*n^2 - 8*n + 7)*a(n-2) + (n-2)*(n-1)*(2*n-5)*a(n-3) - (n-4)*(n-3)*(n-2)^2*(n-1)*a(n-4). - Vaclav Kotesovec, Sep 29 2013
a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n-1/4)/(2*sqrt(2)) * (1-5/(48*sqrt(n))). - Vaclav Kotesovec, Sep 29 2013
a(n) = A000262(n) - A096965(n). - Alois P. Heinz, Dec 01 2021

Extensions

More terms from Robert G. Wilson v, Aug 19 2004
Previous Showing 11-20 of 32 results. Next