cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A023243 Primes that remain prime through 2 iterations of the function f(x) = 2x + 5.

Original entry on oeis.org

7, 13, 31, 37, 67, 73, 79, 139, 151, 181, 367, 541, 613, 661, 709, 739, 787, 811, 829, 997, 1087, 1117, 1123, 1249, 1327, 1669, 1753, 1801, 1861, 1999, 2011, 2113, 2179, 2239, 2293, 2473, 2557, 2659, 2713, 2719, 3037, 3181, 3187, 3271, 3301, 3517, 3727, 3793
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+5 and 4*p+15 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023205 and A089038.

Programs

  • Magma
    [n: n in [0..100000] | IsPrime(n) and IsPrime(2*n+5) and IsPrime(4*n+15)] // Vincenzo Librandi, Aug 04 2010
    
  • PARI
    is(n)=n%6==1 && isprime(2*n+5) && isprime(4*n+15) && isprime(n) \\ Charles R Greathouse IV, Sep 12 2016

Formula

a(n) == 1 (mod 6). - John Cerkan, Sep 12 2016

A182138 Irregular triangle T, read by rows, in which row n lists the distances between n and the two primes whose sum makes 2n in decreasing order (Goldbach conjecture).

Original entry on oeis.org

0, 0, 1, 2, 0, 1, 4, 0, 5, 3, 4, 2, 7, 3, 8, 6, 0, 7, 5, 1, 10, 6, 0, 9, 3, 8, 4, 2, 13, 3, 14, 12, 6, 0, 13, 11, 5, 1, 12, 0, 17, 9, 3, 16, 10, 8, 2, 19, 15, 9, 20, 18, 6, 0, 19, 17, 13, 7, 5, 22, 18, 12, 6, 21, 15, 3, 20, 16, 14, 10, 4, 25, 15, 9, 24, 18, 12, 0, 23, 17, 13, 11, 7, 1
Offset: 2

Views

Author

Jean COHEN, Apr 16 2012

Keywords

Comments

The Goldbach conjecture is that for any even integer 2n>=4, at least one pair of primes p and q exist such that p+q=2n. The present numbers listed here are the distances d between each prime and n, the half of the even integer 2n: d=n-p=q-n with p <= q.
See the link section for plots I added. - Jason Kimberley, Oct 04 2012
Each nonzero entry d of row n is coprime to n. For otherwise n+d would be composite. - Jason Kimberley, Oct 10 2012

Examples

			n=2, 2n=4, 4=2+2, p=q=2 -> d=0.
n=18, 2n=36, four prime pairs have a sum of 36: 5+31, 7+29, 13+23, 17+19, with the four distances d being 13=18-5=31-18, 11=18-7=29-18, 5=18-13=23-18, 1=18-17=19-18.
Triangle begins:
  0;
  0;
  1;
  2, 0;
  1;
  4, 0;
  5, 3;
  4, 2;
  7, 3;
  8, 6, 0;
		

Crossrefs

Cf. A045917 (row lengths), A047949 (first column), A047160 (last elements of rows).
Cf. A184995.

Programs

Formula

T(n,i) = n - A184995(n,i). - Jason Kimberley, Sep 25 2012

A023274 Primes that remain prime through 3 iterations of function f(x) = 2x + 5.

Original entry on oeis.org

13, 31, 37, 67, 73, 181, 367, 541, 661, 997, 1087, 1117, 1327, 1861, 2179, 2293, 2473, 2713, 2719, 3271, 3727, 4363, 5281, 5443, 5749, 7459, 8089, 8707, 9109, 9181, 9337, 10357, 10639, 12553, 13183, 14923, 16183, 16249, 17341, 17419, 17761, 17923, 17989
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+5, 4*p+15 and 8*p+35 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023205, A023243, and of A089038.

Programs

  • Magma
    [n: n in [1..100000] | IsPrime(n) and IsPrime(2*n+5) and IsPrime(4*n+15) and IsPrime(8*n+35)] // Vincenzo Librandi, Aug 04 2010
  • Maple
    select(t -> isprime(t) and isprime(2*t+5) and isprime(4*t+15) and isprime(8*t+35), [seq(t,t=7..20000,6)]);# Robert Israel, Sep 18 2016
  • Mathematica
    Select[Prime@ Range@ 2100, Times @@ Boole@ PrimeQ@ Rest@ NestList[2 # + 5 &, #, 3] > 0 &] (* Michael De Vlieger, Sep 16 2016 *)

Formula

a(n) == 1 (mod 6). - John Cerkan, Sep 16 2016

A073273 a(n) = floor(sqrt(prime(n)*prime(n+2))).

Original entry on oeis.org

3, 4, 7, 9, 13, 15, 19, 23, 26, 32, 35, 39, 43, 47, 52, 56, 62, 65, 69, 74, 77, 83, 89, 94, 99, 103, 105, 109, 117, 121, 131, 134, 142, 144, 152, 156, 161, 167, 172, 176, 184, 186, 193, 195, 203, 210, 218, 225, 229, 233, 236, 244, 248, 256, 262, 266, 272, 275
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2002

Keywords

Comments

A000040(n) < a(n) < A000040(n+2).

Examples

			prime(10)*prime(12) = 29*37 = 1073 = 32*32+49, therefore a(10)=32; A073274(10) = prime(11)-a(10) = 31-32 = -1.
		

Crossrefs

Programs

  • Magma
    [Floor(Sqrt(NthPrime(n)*NthPrime(n+2))): n in [1..60]]; // Vincenzo Librandi, Dec 12 2015
    
  • Mathematica
    Table[Floor[Sqrt[Prime[n] Prime[n + 2]]], {n, 60}] (* Vincenzo Librandi, Dec 12 2015 *)
  • PARI
    a(n) = sqrtint(prime(n)*prime(n+2)); \\ Michel Marcus, Dec 12 2015

Formula

a(n) = A098090(A028310(n - 1)) + A089038(n). - Miko Labalan, Dec 12 2015

A023304 Primes that remain prime through 4 iterations of function f(x) = 2x + 5.

Original entry on oeis.org

13, 31, 181, 541, 661, 1087, 1861, 2179, 2719, 3727, 7459, 8089, 8707, 9109, 10639, 17341, 19333, 22501, 23293, 29287, 32797, 39847, 40387, 42703, 46591, 51613, 53101, 56149, 56809, 57829, 59233, 80779, 87643, 89113, 89413, 91291, 93979, 94261, 98899
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+5, 4*p+15, 8*p+35 and 16*p+75 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023205, A023243, A023274, and A089038.

Programs

  • Magma
    [n: n in [1..1000000] | IsPrime(n) and IsPrime(2*n+5) and IsPrime(4*n+15) and IsPrime(8*n+35) and IsPrime(16*n+75)]; // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    Select[Prime@ Range[10^4], Times @@ Boole@ PrimeQ@ Rest@ NestList[2 # + 5 &, #, 4] > 0 &] (* Michael De Vlieger, Sep 27 2016 *)
    Select[Prime[Range[10000]],AllTrue[Rest[NestList[2#+5&,#,4]],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 23 2020 *)

Formula

a(n) == 1 (mod 6). - John Cerkan, Sep 27 2016

Extensions

Definition clarified by Harvey P. Dale, Oct 23 2020

A153052 Numbers m such that 2*m + 5 is not a prime.

Original entry on oeis.org

2, 5, 8, 10, 11, 14, 15, 17, 20, 22, 23, 25, 26, 29, 30, 32, 35, 36, 38, 40, 41, 43, 44, 45, 47, 50, 53, 55, 56, 57, 58, 59, 60, 62, 64, 65, 68, 69, 70, 71, 74, 75, 77, 78, 80, 82, 83, 85, 86, 89, 90, 91, 92, 95, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 110
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

One less than the associated entry in A153238. - R. J. Mathar, Jan 05 2011
The terms are the values of 2*h*k + k + h - 2, where h and k are positive integers. - Vincenzo Librandi, Jan 19 2013

Crossrefs

Programs

  • Magma
    [n: n in [0..110]| not IsPrime(2*n+5)]; // Vincenzo Librandi, Oct 16 2012
  • Mathematica
    Select[Range[0, 150], !PrimeQ[2*# + 5] &] (* Vincenzo Librandi, Oct 16 2012 *)

A154680 Triangle read by rows where T(m,n)=2*m*n + m + n - 2.

Original entry on oeis.org

2, 5, 10, 8, 15, 22, 11, 20, 29, 38, 14, 25, 36, 47, 58, 17, 30, 43, 56, 69, 82, 20, 35, 50, 65, 80, 95, 110, 23, 40, 57, 74, 91, 108, 125, 142, 26, 45, 64, 83, 102, 121, 140, 159, 178, 29, 50, 71, 92, 113, 134, 155, 176, 197, 218, 32, 55, 78, 101, 124, 147, 170, 193, 216, 239, 262
Offset: 1

Views

Author

Vincenzo Librandi, Jan 18 2009

Keywords

Comments

All terms are in A153052.
First column: A016789; second column: 5*A000027; third column: A016993; fourth column: A017185. - Vincenzo Librandi, Nov 18 2012

Examples

			Triangle begins:
2;
5,  10;
8,  15, 22;
11, 20, 29, 38;
14, 25, 36, 47, 58;
17, 30, 43, 56, 69,  82;
20, 35, 50, 65, 80,  95,  110;
23, 40, 57, 74, 91,  108, 125, 142;
26, 45, 64, 83, 102, 121, 140, 159, 178;
29, 50, 71, 92, 113, 134, 155, 176, 197, 218; etc.
		

Crossrefs

Programs

  • Magma
    [2*n*k+n+k-2: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 18 2012
  • Mathematica
    Flatten[Table[Floor[2 n m + m + n - 2], {n, 1, 16}, {m, n}]] (* Vincenzo Librandi, May 14 2012 *)

A023332 Primes that remain prime through 5 iterations of function f(x) = 2x + 5.

Original entry on oeis.org

13, 541, 1087, 1861, 3727, 23293, 40387, 87643, 98899, 109111, 115153, 116329, 119101, 131617, 133597, 163909, 197521, 214021, 215389, 218227, 238207, 263239, 294751, 489901, 493693, 665527, 734131, 767881, 808693, 895351, 1038127, 1051957
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+5, 4*p+15, 8*p+35, 16*p+75 and 32*p+155 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023205, A023243, A023274, A023304, and A089038.

Programs

  • Magma
    [n: n in [1..5000000] | IsPrime(n) and IsPrime(2*n+5) and IsPrime(4*n+15) and IsPrime(8*n+35) and IsPrime(16*n+75) and IsPrime(32*n+155)] // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    txQ[p_]:=AllTrue[NestList[2#+5&,p,5],PrimeQ]; Select[Prime[Range[83000]],txQ] (* Harvey P. Dale, May 10 2024 *)

Formula

a(n) == 1 (mod 6). - John Cerkan, Oct 09 2016

A086304 Numbers n such that n+6 is prime.

Original entry on oeis.org

1, 5, 7, 11, 13, 17, 23, 25, 31, 35, 37, 41, 47, 53, 55, 61, 65, 67, 73, 77, 83, 91, 95, 97, 101, 103, 107, 121, 125, 131, 133, 143, 145, 151, 157, 161, 167, 173, 175, 185, 187, 191, 193, 205, 217, 221, 223, 227, 233, 235, 245, 251, 257, 263, 265, 271, 275, 277
Offset: 1

Views

Author

Giovanni Teofilatto, Aug 29 2003

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

Cf. A089038.

Programs

Formula

a(n) = 2*A089038(n+1)-1.

Extensions

Corrected and extended by Ray Chandler, Nov 29 2003

A337767 Array T(n,k) (n >= 1, k >= 1) read by upward antidiagonals and defined as follows. Let N(p,i) denote the result of applying "nextprime" i times to p; T(n,k) = smallest prime p such that N(p,n) - p = 2*k, or 0 if no such prime exists.

Original entry on oeis.org

3, 0, 7, 0, 3, 23, 0, 0, 5, 89, 0, 0, 0, 23, 139, 0, 0, 0, 3, 19, 199, 0, 0, 0, 0, 7, 47, 113, 0, 0, 0, 0, 3, 17, 83, 1831, 0, 0, 0, 0, 0, 5, 23, 211, 523, 0, 0, 0, 0, 0, 0, 17, 43, 109, 887, 0, 0, 0, 0, 0, 0, 3, 13, 79, 317, 1129, 0, 0, 0, 0, 0, 0, 0, 7, 19, 107, 619, 1669
Offset: 1

Views

Author

Robert G. Wilson v, Sep 19 2020

Keywords

Comments

The positive entries in each row and column are distinct.
Number of zeros right of 3 are 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 3, 3, 3, 6, 5, 5, 4, 6, ..., .
Number of zeros in the n-th row are 0, 1, 3, 4, 6, 7, 10, 13, 14, 17, 18, 20, 22, 25, 28, 30, 32, 36, 37, 40, 45, 47, 51, 52, 55, ..., .
The usual convention in the OEIS is to use -1 in the "escape clause" - that is, when "no such terms exists". It is probably too late to change this sequence, but it should not be cited as a role model for other sequences. - N. J. A. Sloane, Jan 19 2021
a(1416), a(1637), and a(1753) were provided by Brian Kehrig. - Martin Raab, Jun 28 2024

Examples

			The initial rows of the array are:
  3, 7, 23, 89, 139, 199, 113, 1831, 523, 887, 1129, 1669, 2477, 2971, 4297, ...
  0, 3, 5, 23, 19, 47, 83, 211, 109, 317, 619,  199, 1373, 1123, 1627, 4751, ...
  0, 0, 0,  3,  7, 17, 23,  43,  79, 107, 109,  113,  197,  199,  317,  509, ...
  0, 0, 0,  0,  3,  5, 17,  13,  19,  47,  79,   73,  113,  109,  193,  317, ...
  0, 0, 0,  0,  0,  0,  3,   7,  11,  17,  19,   43,   71,   73,  107,  191, ...
  0, 0, 0,  0,  0,  0,  0,   3,   5,  11,   7,   13,   41,   31,   67,  107, ...
  0, 0, 0,  0,  0,  0,  0,   0,   0,   3,   0,    5,   11,   13,   23,   47, ...
  0, 0, 0,  0,  0,  0,  0,   0,   0,   0,   0,    0,    3,    0,    7,   29, ...
  0, 0, 0,  0,  0,  0,  0,   0,   0,   0,   0,    0,    0,    3,    0,    5, ...
The initial antidiagonals are:
  [3]
  [0, 7]
  [0, 3, 23]
  [0, 0, 5, 89]
  [0, 0, 0, 23, 139]
  [0, 0, 0, 3, 19, 199]
  [0, 0, 0, 0, 7, 47, 113]
  [0, 0, 0, 0, 3, 17, 83, 1831]
  [0, 0, 0, 0, 0, 5, 23, 211, 523]
  [0, 0, 0, 0, 0, 0, 17, 43, 109, 887]
  [0, 0, 0, 0, 0, 0, 3, 13, 79, 317, 1129]
  ...
		

Crossrefs

Cf. A000230, A144103, A339943, A339944 (rows 1 to 4), A086153.

Programs

  • Mathematica
    t[r_, c_] := If[ 2c <= Prime[r + 2] - 5, 0, Block[{p = 3}, While[ NextPrime[p, r] != 2c + p && p < 52000000, p = NextPrime@ p]; If[p > 52000000, 0, p]]]; Table[ t[r -c +1, c], {r, 11}, {c, r}] // Flatten

Formula

T(n,k) = 0 if prime(n+2)-5 <= 2k. A089038.
T(n,k) = 3 if prime(n+2) = 2k+6. A067076.

Extensions

Entry revised by N. J. A. Sloane, Nov 07 2020
Deleted a-file and b-file because entries were unreliable. - N. J. A. Sloane, Nov 01 2021
Previous Showing 21-30 of 33 results. Next