cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A132721 Decimal expansion of 31/Pi.

Original entry on oeis.org

9, 8, 6, 7, 6, 0, 6, 4, 7, 1, 6, 9, 7, 5, 1, 0, 8, 1, 7, 6, 7, 0, 7, 9, 3, 3, 2, 9, 0, 9, 5, 8, 9, 0, 4, 4, 6, 1, 3, 6, 4, 9, 8, 0, 3, 5, 9, 0, 8, 2, 9, 9, 8, 2, 2, 3, 5, 5, 3, 7, 5, 3, 3, 1, 6, 5, 1, 6, 0, 1, 4, 5, 3, 3, 2, 2, 0, 4, 5, 1, 7, 5, 5, 8, 7, 0, 5, 5, 7, 7, 1, 5
Offset: 1

Views

Author

Omar E. Pol, Aug 31 2007

Keywords

Examples

			9.867606471697510817670793...
		

Crossrefs

Programs

Extensions

Terms a(32) and beyond from Andrew Howroyd, Jan 03 2020

A132717 Decimal expansion of 27/Pi.

Original entry on oeis.org

8, 5, 9, 4, 3, 6, 6, 9, 2, 6, 9, 6, 2, 3, 4, 8, 1, 3, 1, 5, 1, 9, 7, 2, 3, 2, 2, 2, 1, 1, 5, 7, 7, 5, 5, 4, 9, 8, 6, 0, 8, 2, 0, 8, 6, 9, 9, 8, 4, 6, 4, 8, 2, 3, 2, 3, 7, 4, 0, 3, 6, 5, 7, 9, 1, 8, 0, 4, 2, 7, 0, 7, 2, 2, 4, 8, 2, 3, 2, 8, 9, 4, 8, 6, 6, 1, 4, 5, 3, 4, 9, 3, 7, 7, 6, 6, 6, 6, 4, 1, 6, 2, 7, 9, 3
Offset: 1

Views

Author

Omar E. Pol, Aug 31 2007

Keywords

Examples

			8.59436692696234813151972322211577554986082086998464...
		

Crossrefs

Programs

A268085 a(n) = Catalan(n)^2*n.

Original entry on oeis.org

0, 1, 8, 75, 784, 8820, 104544, 1288287, 16359200, 212751396, 2821056160, 38013731756, 519227905728, 7174705330000, 100136810390400, 1409850293610375, 20002637245262400, 285732116760449700, 4106497099278420000, 59341164471850545900, 861753537765219528000
Offset: 0

Views

Author

Ralf Steiner, Jan 26 2016

Keywords

Comments

The series whose terms are the quotients a(n)/A013709(n) is convergent to 1-3/Pi.(see formula).
Proof: Both the Wallis-Lambert-series-1=4/Pi-1 and the elliptic Euler-series=1-2/Pi are absolutely convergent series. Thus any linear combination of the terms of these series will be also absolutely convergent to the value of the linear combination of these series - in this case to 1-3/Pi. Q.E.D.
Apart from inclusion of a(0) the same as A145600. - R. J. Mathar, Feb 07 2016

Examples

			For n=3 the a(3)= 75.
		

Crossrefs

Programs

  • Magma
    [Catalan(n)^2*n: n in [0..20]]; // Vincenzo Librandi, Jan 26 2016
    
  • Mathematica
    Table[CatalanNumber[n]^2 n, {n, 0, 20}]
  • PARI
    a(n) = n*(binomial(2*n, n)/(n+1))^2; \\ Altug Alkan, Jan 26 2016

Formula

Sum_{n>=0} a(n)/A013709(n) = 1 - 3/Pi (see A089491).

Extensions

Corrected and extended by Vincenzo Librandi, Jan 26 2016

A284059 The absolute values of A275966.

Original entry on oeis.org

1, 1, 2, 0, 0, 2, 2, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 2, 2, 0, 4, 2, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 4, 2, 0, 0, 2, 2, 0, 2, 0, 0, 0, 0, 2, 0, 0, 4, 0, 2, 0, 0, 2, 4, 0, 0, 4, 2, 0, 4, 0, 2, 0, 0, 0, 0, 0, 4, 0, 2, 0, 2, 0, 2, 0, 0, 2, 0
Offset: 1

Views

Author

Gevorg Hmayakyan, Mar 19 2017

Keywords

Comments

This is multiplicative function with a(p^n) = |Re(I^(p^n+1) - I^(p^(n-1)+1))|.

Examples

			a(9) = |Re(I*(mobius(1)*I^9 + mobius(3)*I^3 + mobius(9)*I))| = |Re((I^10 - I^4))| = |-2| = 2.
		

Crossrefs

Programs

  • Maple
    a(n):=abs(Re(I*add(numtheory:-mobius(d)*I^(n/d), d = numtheory:-divisors(n)))).
  • Mathematica
    Table[Abs@ Re[I* Sum[MoebiusMu[d] * I^(n/d), {d, Divisors[n]}]], {n, 87}] (* Indranil Ghosh, Mar 19 2017 *)
    f[p_, e_] := If[Mod[p, 4] == 1, 0, 2]; f[2, e_] := If[e == 1, 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 27 2024 *)
  • PARI
    a(n)=my(f=factor(n)); prod(i=1,#f~, if(f[i,1]==2, if(f[i,2]==1,1,0), if(f[i,1]%4==3, 2, 0))) \\ Charles R Greathouse IV, Mar 22 2017

Formula

a(n) = |Re(I*Sum_{d|n}(mobius(d)*I^(n/d)))|.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3/Pi = 0.954929... (A089491). - Amiram Eldar, Jan 27 2024

A371604 Decimal expansion of 5 * sqrt(3 - phi) / (2 * Pi).

Original entry on oeis.org

9, 3, 5, 4, 8, 9, 2, 8, 3, 7, 8, 8, 6, 3, 9, 0, 3, 3, 2, 1, 2, 9, 1, 9, 0, 6, 6, 1, 5, 2, 9, 8, 2, 8, 1, 6, 7, 9, 6, 7, 8, 1, 9, 2, 7, 2, 9, 8, 4, 9, 8, 1, 2, 4, 7, 0, 6, 6, 5, 0, 1, 9, 8, 7, 0, 2, 5, 5, 5, 3, 3, 8, 9, 8, 4, 2, 8, 9, 2, 2, 6, 7, 8, 8, 0, 7, 9, 8, 8, 6, 2, 8, 4, 0, 8, 9, 8, 5, 9
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 01 2024

Keywords

Examples

			0.93548928378863903321291906615298281...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[5 Sqrt[3 - GoldenRatio]/(2 Pi), 10, 99][[1]]

Formula

Equals Product_{k>=1} (1 - 1/(5*k)^2).
Equals A258403/Pi. - Hugo Pfoertner, Apr 01 2024

A132703 Decimal expansion of 13/Pi.

Original entry on oeis.org

4, 1, 3, 8, 0, 2, 8, 5, 2, 0, 3, 8, 9, 2, 7, 8, 7, 2, 9, 9, 9, 0, 9, 7, 7, 8, 4, 7, 6, 8, 5, 3, 7, 3, 4, 1, 2, 8, 9, 5, 9, 5, 0, 7, 8, 9, 2, 5, 1, 8, 6, 7, 6, 6, 7, 4, 3, 9, 3, 5, 0, 9, 4, 5, 5, 3, 1, 3, 1, 6, 7, 3, 8, 4, 8, 9, 8, 8, 9, 9, 1, 2, 3, 4, 2, 9, 5, 8, 8, 7, 1, 9, 2, 2, 5, 8, 0, 2, 3, 4, 8, 5, 7, 8, 9
Offset: 1

Views

Author

Omar E. Pol, Aug 31 2007

Keywords

Examples

			4.138028520389278729990977847685373412895950789251867667439350945531316738....
		

Crossrefs

Programs

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 02 2009

A132704 Decimal expansion of 14/Pi.

Original entry on oeis.org

4, 4, 5, 6, 3, 3, 8, 4, 0, 6, 5, 7, 3, 0, 6, 9, 4, 0, 1, 5, 2, 8, 7, 4, 5, 3, 7, 4, 4, 3, 0, 4, 0, 2, 1, 3, 6, 9, 6, 4, 8, 7, 0, 0, 8, 0, 7, 3, 2, 7, 8, 0, 5, 6, 4, 9, 3, 4, 6, 8, 5, 6, 3, 3, 6, 4, 9, 1, 1, 0, 3, 3, 3, 7, 5, 8, 3, 4, 2, 9, 8, 2, 5, 2, 3, 1, 8, 6, 4, 7, 7, 4, 5, 5, 0, 8, 6, 4, 0, 6, 7, 7, 0, 0, 3, 9, 5, 9, 6, 3, 4, 9, 2, 2, 2, 8, 2, 5, 0, 3
Offset: 1

Views

Author

Omar E. Pol, Aug 31 2007

Keywords

Examples

			4.45633840657306940152874537443040213696487008073278056493468563364911033....
		

Crossrefs

Programs

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 02 2009
More terms from Harvey P. Dale, Oct 03 2012

A132706 Decimal expansion of 16/Pi.

Original entry on oeis.org

5, 0, 9, 2, 9, 5, 8, 1, 7, 8, 9, 4, 0, 6, 5, 0, 7, 4, 4, 6, 0, 4, 2, 8, 0, 4, 2, 7, 9, 2, 0, 4, 5, 9, 5, 8, 5, 1, 0, 2, 7, 0, 8, 6, 6, 3, 6, 9, 4, 6, 0, 6, 3, 5, 9, 9, 2, 5, 3, 5, 5, 0, 0, 9, 8, 8, 4, 6, 9, 7, 5, 2, 4, 2, 9, 5, 2, 4, 9, 1, 2, 2, 8, 8, 3, 6, 4, 1, 6, 8, 8, 5, 2, 0, 0, 9, 8, 7, 5, 0, 5, 9, 4, 3, 3
Offset: 1

Views

Author

Omar E. Pol, Aug 31 2007

Keywords

Examples

			5.092958178940650744604280427920459585102708663694606359925355....
		

References

  • Bruce C. Berndt, Ramanujan’s Notebooks, Part II, Springer-Verlag, New York, 1989.

Crossrefs

Programs

Formula

Equals 4 + Sum_{k>=0} binomial(2*k,k)^2/((k+1)^2*16^k). - Amiram Eldar, May 21 2021
16/Pi = 5 + 1^2/(10 + 3^2/(10 + 5^2/(10 + ...))). See Berndt, Entry 25, p. 140, with n = 0 and x = 5. - Peter Bala, Feb 18 2024

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 02 2009

A132707 Decimal expansion of 17/Pi.

Original entry on oeis.org

5, 4, 1, 1, 2, 6, 8, 0, 6, 5, 1, 2, 4, 4, 4, 1, 4, 1, 6, 1, 4, 2, 0, 4, 7, 9, 5, 4, 6, 6, 5
Offset: 1

Views

Author

Omar E. Pol, Aug 31 2007

Keywords

Examples

			5.4112680651244414161420479546654883091716279551755192574206896980024911195637....
		

Crossrefs

Programs

A132709 Decimal expansion of 19/Pi.

Original entry on oeis.org

6, 0, 4, 7, 8, 8, 7, 8, 3, 7, 4, 9, 2, 0, 2, 2, 7, 5, 9, 2, 1, 7, 5, 8, 3, 0, 0, 8, 1, 5, 5, 5, 4, 5, 7, 5, 7, 3, 0, 9, 4, 6, 6, 5, 3, 8, 1, 3, 7, 3, 4, 5, 0, 5, 2, 4, 1, 1, 3, 5, 9, 0, 7, 4, 2, 3, 8, 0, 7, 8, 3, 1, 0, 1, 0, 0, 6, 0, 8, 3, 3, 3, 4, 2, 4, 3, 2, 4, 5, 0, 5, 1, 1, 7, 6, 1, 7, 2, 6, 6, 3, 3, 0, 7, 6
Offset: 1

Views

Author

Omar E. Pol, Aug 31 2007

Keywords

Examples

			6.04788783749202275921758300815554575730946653813734505241135907423807831010....
		

Crossrefs

Programs

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 02 2009
Previous Showing 11-20 of 27 results. Next