cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A015544 Lucas sequence U(5,-8): a(n+1) = 5*a(n) + 8*a(n-1), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 5, 33, 205, 1289, 8085, 50737, 318365, 1997721, 12535525, 78659393, 493581165, 3097180969, 19434554165, 121950218577, 765227526205, 4801739379641, 30130517107845, 189066500576353, 1186376639744525, 7444415203333449, 46713089134623445
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 5*Self(n-1) + 8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2012
    
  • Mathematica
    a[n_]:=(MatrixPower[{{1,2},{1,-6}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{5, 8}, {0, 1}, 30] (* Vincenzo Librandi, Nov 13 2012 *)
  • PARI
    A015544(n)=imag((2+quadgen(57))^n) \\ M. F. Hasler, Mar 06 2009
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1 - 5*x - 8*x^2))) \\ G. C. Greubel, Jan 01 2018
  • Sage
    [lucas_number1(n,5,-8) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = 5*a(n-1) + 8*a(n-2).
G.f.: x/(1 - 5*x - 8*x^2). - M. F. Hasler, Mar 06 2009

Extensions

More precise definition by M. F. Hasler, Mar 06 2009

A218984 Power floor sequence of 2+sqrt(6).

Original entry on oeis.org

4, 17, 75, 333, 1481, 6589, 29317, 130445, 580413, 2582541, 11490989, 51129037, 227498125, 1012250573, 4503998541, 20040495309, 89169978317, 396760903885, 1765383572173, 7855056096461, 34950991530189, 155514078313677, 691958296315085, 3078861341887693
Offset: 0

Views

Author

Clark Kimberling, Nov 11 2012

Keywords

Comments

See A214992 for a discussion of power floor sequence and the power floor function, p1(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(6), and the limit p1(r) = 3.77794213613376987528458445727451673384055973517...

Examples

			a(0) = [r] = 4, where r = 2+sqrt(6); a(1) = [4*r] = 17; a(2) = [17*r] = 75.
		

Crossrefs

Programs

  • Mathematica
    x = 2 + Sqrt[6]; z = 30; (* z = # terms in sequences *)
    f[x_] := Floor[x]; c[x_] := Ceiling[x];
    p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
    p1[n_] := f[x*p1[n - 1]]
    p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
    p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
    p4[n_] := c[x*p4[n - 1]]
    t1 = Table[p1[n], {n, 0, z}]  (* A218984 *)
    t2 = Table[p2[n], {n, 0, z}]  (* A090017 *)
    t3 = Table[p3[n], {n, 0, z}]  (* A123347 *)
    t4 = Table[p4[n], {n, 0, z}]  (* A218985 *)
  • PARI
    Vec((4 - 3*x - 2*x^2) / ((1 - x)*(1 - 4*x - 2*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017

Formula

a(n) = [x*a(n-1)], where x=2+sqrt(6), a(0) = [x].
a(n) = 5*a(n-1) - 2*a(n-2) - 2*a(n-3).
G.f.: (4 - 3*x - 2*x^2)/(1 - 5*x + 2*x^2 + 2*x^3).
a(n) = (1/30)*(6 + (57-23*sqrt(6))*(2-sqrt(6))^n + (2+sqrt(6))^n*(57+23*sqrt(6))). - Colin Barker, Nov 13 2017

A218985 Power ceiling sequence of 2+sqrt(6).

Original entry on oeis.org

5, 23, 103, 459, 2043, 9091, 40451, 179987, 800851, 3563379, 15855219, 70547635, 313900979, 1396699187, 6214598707, 27651793203, 123036370227, 547449067315, 2435869009715, 10838374173491, 48225234713395, 214577687200563, 954761218229043, 4248200247317299
Offset: 0

Views

Author

Clark Kimberling, Nov 11 2012

Keywords

Comments

See A214992 for a discussion of power ceiling sequence and the power ceiling function, p4(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(6), and the limit p4(r) = 5.2127890589687233047437696796862841514303439...
See A218984 for the power floor function, p1(x). For comparison of p4 and p1, limit(p4(r)/p1(r)) = 2*(1+sqrt(6))/5 = 1.379795897113271239278913629882356556786378...

Examples

			a(0) = ceiling(r) = 5, where r = 2+sqrt(6).
a(1) = ceiling(5*r) = 23; a(2) = ceiling(23*r) = 103.
		

Crossrefs

Programs

  • Mathematica
    (See A218984.)
  • PARI
    Vec((5 - 2*x - 2*x^2) / ((1 - x)*(1 - 4*x - 2*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017

Formula

a(n) = [x*a(n-1)], where x=2+sqrt(6), a(0) = [x].
a(n) = 5*a(n-1) - 2*a(n-2) - 2*a(n-3).
G.f.: (5 - 2*x - 2*x^2)/(1 - 5*x + 2*x^2 + 2*x^3).
a(n) = (1/15)*(-3 + (39-16*sqrt(6))*(2-sqrt(6))^n + (2+sqrt(6))^n*(39+16*sqrt(6))). - Colin Barker, Nov 13 2017

A335749 a(n) = n!*[x^n] exp(2*x)*(y*sinh(x*y) + cosh(x*y)) and y = sqrt(6).

Original entry on oeis.org

1, 8, 34, 152, 676, 3008, 13384, 59552, 264976, 1179008, 5245984, 23341952, 103859776, 462123008, 2056211584, 9149092352, 40708792576, 181133355008, 805951005184, 3586070730752, 15956184933376, 70996881195008, 315899894646784, 1405593340977152, 6254173153202176
Offset: 0

Views

Author

Peter Luschny, Jun 24 2020

Keywords

Crossrefs

Cf. A335312.

Programs

  • Maple
    aList := proc(len) local H; H := (x, y) -> exp(2*x)*(y*sinh(x*y) + cosh(x*y)):
    series(H(x, sqrt(6)), x, len + 1): seq(k!*coeff(%, x, k), k=0..len-1) end:
    aList(25);
  • Mathematica
    LinearRecurrence[{4, 2}, {1, 8}, 30] (* Paolo Xausa, Feb 01 2024 *)
  • PARI
    Vec((1 + 4*x) / (1 - 4*x - 2*x^2) + O(x^25)) \\ Colin Barker, Jun 25 2020

Formula

a(n) = A335312(n, 6).
From Colin Barker, Jun 24 2020: (Start)
G.f.: (1 + 4*x) / (1 - 4*x - 2*x^2) for n>1.
a(n) = 4*a(n-1) + 2*a(n-2). (End)
a(n) = 4*A090017(n)+A090017(n+1). - R. J. Mathar, Mar 10 2022

A123348 Kekulé numbers for certain benzenoids (see the Cyvin-Gutman book for details).

Original entry on oeis.org

0, 3, 12, 54, 240, 1068, 4752, 21144, 94080, 418608, 1862592, 8287584, 36875520, 164077248, 730060032, 3248394624, 14453698560, 64311583488, 286153731072, 1273238091264, 5665259827200, 25207515491328, 112160581619712, 499057357461504, 2220550593085440, 9880317087264768, 43962369535229952
Offset: 0

Views

Author

N. J. A. Sloane, Oct 10 2006

Keywords

Programs

  • Maple
    A123348 := proc(n)
        3*((2+sqrt(6))^n-(2-sqrt(6))^n)/2/sqrt(6) ;
        expand(%) ;
        simplify(%) ;
    end proc:
    seq( A123348(n),n=0..30) ; # R. J. Mathar, Jul 26 2019

Formula

Conjectured g.f.: 1/(1 - Q(0)) - 1, where Q(k)= 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Apr 13 2013
G.f.: -3*x / (2*x^2+4*x-1). a(n)=3*A090017(n). - Colin Barker, Aug 29 2013

A271451 Triangle read by rows of coefficients of polynomials Q_n(x) = 2^(-n)*((x + sqrt(x*(x + 6) - 3) + 1)^n - (x - sqrt(x*(x + 6) - 3) + 1)^n)/sqrt(x*(x + 6) - 3).

Original entry on oeis.org

1, 1, 1, 0, 3, 1, -1, 3, 5, 1, -1, -1, 10, 7, 1, 0, -6, 7, 21, 9, 1, 1, -6, -10, 31, 36, 11, 1, 1, 1, -29, 7, 79, 55, 13, 1, 0, 9, -24, -63, 81, 159, 78, 15, 1, -1, 9, 15, -123, -54, 264, 279, 105, 17, 1, -1, -1, 57, -69, -321, 132, 624, 447, 136, 19, 1, 0, -12, 50, 126, -459, -507, 741, 1245, 671, 171, 21, 1, 1, -12, -20, 302, -81, -1419, -258, 2163, 2227, 959, 210, 23, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 08 2016

Keywords

Comments

The polynomials Q_n(x) have generating function G(x,t) = t/(1 - (x + 1)*t - (x - 1)*t^2) = t + (x + 1)*t^2 + x*(x + 3)*t^3 + (x^3 + 5*x^2 + 3*x - 1)*t^4 + ...
Q_n(x) can be defined by the recurrence relation Q_n(x) = (x + 1)*Q_(n-1)(x) + (x - 1)*Q_(n-2)(x), Q_0(x)=0, Q_1(x)=1.
Discriminants of Q_n(x) gives the sequence: 0, 1, 1, 9, 320, 35600, 10948608, 8664190976, 16836271800320, 77757312009240576, 833309554769920000000, 20346889104219547132493824,...
Q_n(0) = A128834(n).
Q_n(1) = A000079(n-1), n>0.
Q_n(2) = A006190(n).
Q_n(3) = A090017(n).
Q_n(4) = A015536(n).
Q_n(5) = A135032(n).
Q_n(6) = A015562(n).
Q_n(7) = A190560(n).
Q_n(8) = A015583(n).
Q_n(9) = A190957(n).
Q_n(10) = A015603(n).

Examples

			Triangle begins:
   1;
   1,  1;
   0,  3,  1;
  -1,  3,  5,  1;
  -1, -1, 10,  7,  1;
...
The first few polynomials are:
Q_0(x) = 0;
Q_1(x) = 1;
Q_2(x) = x + 1;
Q_3(x) = x^2 + 3*x;
Q_4(x) = x^3 + 5*x^2 + 3*x - 1;
Q_5(x) = x^4 + 7*x^3 + 10*x^2 - x - 1,
...
		

Crossrefs

Cf. A049310.

Programs

  • Mathematica
    Flatten[Table[CoefficientList[((x + Sqrt[x (x + 6) - 3] + 1)^n - (x - Sqrt[x (x + 6) - 3] + 1)^n)/2^n/Sqrt[x (x + 6) - 3], x], {n, 0, 13}]]

A108012 a(n)= 8*a(n-1) -16*a(n-2) +4*a(n-4).

Original entry on oeis.org

0, 4, 18, 76, 320, 1360, 5832, 25200, 109568, 478784, 2100512, 9244352, 40784896, 180284672, 798121088, 3537391360, 15692333056, 69661541376, 309407486464, 1374824795136, 6110847909888, 27168232722432, 120809925167104
Offset: 0

Views

Author

Roger L. Bagula, May 30 2005

Keywords

Programs

  • Mathematica
    M = {{0, 0, 0, 2}, {1, 4, 0, 0}, {0, 2, 0, 0}, {0, 0, 1, 4}} v[1] = {0, 1, 1, 2}; v[n_] := v[n] = M.v[n - 1]; digits = 50; a = Table[v[n][[1]], {n, 1, digits}]
    LinearRecurrence[{8,-16,0,4},{0,4,18,76},30] (* Harvey P. Dale, Aug 11 2017 *)

Formula

G.f.: 2*x*(-2+7*x+2*x^2)/( (2*x^2+4*x-1) * (2*x^2-4*x+1)). [Sep 28 2009]
a(n) = A111567(n-1) + A090017(n+1) - A090017(n) - A090017(n-1), n>0.

Extensions

Definition replaced by recurrence by the Associate Editors of the OEIS, Sep 28 2009

A268409 a(n) = 4*a(n - 1) + 2*a(n - 2) for n>1, a(0)=3, a(1)=5.

Original entry on oeis.org

3, 5, 26, 114, 508, 2260, 10056, 44744, 199088, 885840, 3941536, 17537824, 78034368, 347213120, 1544921216, 6874111104, 30586286848, 136093369600, 605546052096, 2694370947584, 11988575894528, 53343045473280, 237349333682176, 1056083425675264
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2016

Keywords

Comments

In general, the ordinary generating function for the recurrence relation b(n) = r*b(n - 1) + s*b(n - 2), with n>1 and b(0)=k, b(1)=m, is (k - (k*r - m)*x)/(1 - r*x - s*x^2). This recurrence gives the closed form b(n) = (2^(-n - 1)*((k*r - 2*m)*(r - sqrt(r^2 + 4*s))^n + (2*m - k*r)*(sqrt(r^2 + 4*s) + r)^n + k*sqrt(r^2 + 4*s)*(r - sqrt(r^2 + 4*s))^n + k*sqrt(r^2 + 4*s)*(sqrt(r^2 + 4*s) + r)^n))/sqrt(r^2 + 4*s).

Crossrefs

Programs

  • Magma
    [n le 2 select 2*n+1 else 4*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 04 2016
    
  • Mathematica
    RecurrenceTable[{a[0] == 3, a[1] == 5, a[n] == 4 a[n - 1] + 2 a[n - 2]}, a, {n, 23}]
    LinearRecurrence[{4, 2}, {3, 5}, 24]
    Table[((18 + Sqrt[6]) (2 - Sqrt[6])^n - (Sqrt[6] - 18) (2 + Sqrt[6])^n)/12, {n, 0, 23}]
  • PARI
    Vec((3 - 7*x)/(1 - 4*x - 2*x^2) + O(x^30)) \\ Michel Marcus, Feb 04 2016

Formula

G.f.: (3 - 7*x)/(1 - 4*x - 2*x^2).
a(n) = ((18 + sqrt(6))*(2 - sqrt(6))^n - (sqrt(6) - 18)*(2 + sqrt(6))^n)/12.
Lim_{n -> infinity} a(n + 1)/a(n) = 2 + sqrt(6) = A176213.
a(n) = 3*A090017(n+1) -7*A090017(n). - R. J. Mathar, Mar 12 2017
Previous Showing 21-28 of 28 results.