cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A176040 Periodic sequence: Repeat 3, 1.

Original entry on oeis.org

3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3
Offset: 0

Views

Author

Klaus Brockhaus, Apr 07 2010

Keywords

Comments

Interleaving of A010701 and A000012.
Also continued fraction expansion of (3+sqrt(21))/2.
Also decimal expansion of 31/99.
Essentially first differences of A014601.
Inverse binomial transform of 3 followed by A020707.
Second inverse binomial transform of A052919 without initial term 2.
Third inverse binomial transform of A007582 without initial term 1.
Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + ... is the o.g.f. for A008619. - Peter Bala, Mar 13 2015

Crossrefs

Cf. A153284, A010701 (all 3's sequence), A000012 (all 1's sequence), A090458 (decimal expansion of (3+sqrt(21))/2), A010684 (repeat 1, 3), A014601 (congruent to 0 or 3 mod 4), A020707 (2^(n+2)), A052919, A007582 (2^(n-1)*(1+2^n)), A008619.

Programs

  • Magma
    &cat[ [3, 1]: n in [0..52] ];
    [ 2+(-1)^n: n in [0..104] ];
  • Mathematica
    PadRight[{},120,{3,1}] (* or *) LinearRecurrence[{0,1},{3,1},120] (* Harvey P. Dale, Mar 11 2015 *)

Formula

a(n) = 2+(-1)^n.
a(n) = a(n-2) for n > 1; a(0) = 3, a(1) = 1.
a(n) = -a(n-1)+4 for n > 0; a(0) = 3.
a(n) = 3*((n+1) mod 2)+(n mod 2).
a(n) = A010684(n+1).
G.f.: (3+x)/((1-x)*(1+x)).
From Amiram Eldar, Jan 01 2023: (Start)
Multiplicative with a(2^e) = 3, and a(p^e) = 1 for p >= 3.
Dirichlet g.f.: zeta(s)*(1+2^(1-s)). (End)

A222135 Decimal expansion of sqrt(5 - sqrt(5 - sqrt(5 - sqrt(5 - ... )))).

Original entry on oeis.org

1, 7, 9, 1, 2, 8, 7, 8, 4, 7, 4, 7, 7, 9, 2, 0, 0, 0, 3, 2, 9, 4, 0, 2, 3, 5, 9, 6, 8, 6, 4, 0, 0, 4, 2, 4, 4, 4, 9, 2, 2, 2, 8, 2, 8, 8, 3, 8, 3, 9, 8, 5, 9, 5, 1, 3, 0, 3, 6, 2, 1, 0, 6, 1, 9, 5, 3, 4, 3, 4, 2, 1, 2, 7, 7, 3, 8, 8, 5, 4, 4, 3, 3, 0, 2, 1, 8, 0, 7, 7, 9, 7, 4, 6, 7, 2, 2, 5, 1, 6, 3
Offset: 1

Views

Author

Jaroslav Krizek, Feb 08 2013

Keywords

Comments

Sequence with a(1) = 2 is decimal expansion of sqrt(5 + sqrt(5 + sqrt(5 + sqrt(5 + ... )))) - A222134.

Examples

			1.791287847477920003294023596864...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Sqrt[21] - 1)/2, 10, 130]

Formula

Closed form: (sqrt(21) - 1)/2 = A090458-2 = A107905-3 = A222134-1.
sqrt(5 - sqrt(5 - sqrt(5 - sqrt(5 - ... )))) + 1 = sqrt(5 + sqrt(5 + sqrt(5 + sqrt(5 + ... )))). See A222134.
Minimal polynomial: x^2 + x - 5. - Stefano Spezia, Jul 02 2025

A134927 a(0)=a(1)=1; a(n) = 3*(a(n-1) + a(n-2)).

Original entry on oeis.org

1, 1, 6, 21, 81, 306, 1161, 4401, 16686, 63261, 239841, 909306, 3447441, 13070241, 49553046, 187869861, 712268721, 2700415746, 10238053401, 38815407441, 147160382526, 557927369901, 2115263257281, 8019571881546, 30404505416481
Offset: 0

Views

Author

Rolf Pleisch, Jan 29 2008

Keywords

Crossrefs

Essentially the same as A108306.

Programs

  • Maple
    a[0]:=1:a[1]:=1:for n from 2 to 50 do a[n]:=3*a[n-1]+3*a[n-2] od: seq(a[n], n=0..33); # Zerinvary Lajos, Dec 14 2008
  • Mathematica
    LinearRecurrence[{3, 3}, {1, 1}, 30]
  • PARI
    a=[1,1];for(i=2,10,a=concat(a,3*a[#a]+3*a[#a-1]));a \\ Charles R Greathouse IV, Oct 04 2011
  • Sage
    from sage.combinat.sloane_functions import recur_gen2
    it = recur_gen2(1,1,3,3)
    [next(it) for i in range(25)] # Zerinvary Lajos, Jun 25 2008
    

Formula

From R. J. Mathar, Jan 31 2008: (Start)
O.g.f.: (-1+2*x)/(-1 + 3*x + 3*x^2).
a(n) = A030195(n+1)-2*A030195(n). (End)
a(n) = A108306(n-1), n>0. - R. J. Mathar, Oct 04 2011
a(n) ~ 3.7912878474...^n, where the constant is A090458. - Charles R Greathouse IV, Oct 04 2011

Extensions

More terms from Joshua Zucker, Feb 23 2008
Previous Showing 11-13 of 13 results.