A364390 Triangle T(n, k) based on A176040 which read by rows yields a permutation of the positive integers.
1, 3, 2, 8, 7, 4, 10, 9, 6, 5, 19, 18, 15, 14, 11, 21, 20, 17, 16, 13, 12, 34, 33, 30, 29, 26, 25, 22, 36, 35, 32, 31, 28, 27, 24, 23, 53, 52, 49, 48, 45, 44, 41, 40, 37, 55, 54, 51, 50, 47, 46, 43, 42, 39, 38, 76, 75, 72, 71, 68, 67, 64, 63, 60, 59, 56, 78, 77, 74, 73, 70, 69, 66, 65, 62, 61, 58, 57
Offset: 1
Examples
Triangle T(n, k) for 1 <= k <= n begins: n\k: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ========================================================================== 01 : 1 02 : 3 2 03 : 8 7 4 04 : 10 9 6 5 05 : 19 18 15 14 11 06 : 21 20 17 16 13 12 07 : 34 33 30 29 26 25 22 08 : 36 35 32 31 28 27 24 23 09 : 53 52 49 48 45 44 41 40 37 10 : 55 54 51 50 47 46 43 42 39 38 11 : 76 75 72 71 68 67 64 63 60 59 56 12 : 78 77 74 73 70 69 66 65 62 61 58 57 13 : 103 102 99 98 95 94 91 90 87 86 83 82 79 14 : 105 104 101 100 97 96 93 92 89 88 85 84 81 80 etc.
Programs
-
PARI
T(n,k) = n*(n+1)/2 + (n-1)*(n%2) - 2*k + 3 - (k%2)
Formula
T(n, k) = n*(n+1)/2 + (n-1)*(n mod 2) - 2*k + 3 - (k mod 2) for 1 <= k <= n.
T(n, 1) = n*(n+1)/2 + (n-1)*(n mod 2) for n > 0.
T(2*n, 1) = A000217(2*n) for n > 0.
T(n, k) - T(n, k+1) = A176040(k) for k > 0.
T(n, k) = T(n-1, k) + T(n, k-1) - T(n-1, k-1) for 1 < k < n.
T(2*n, k) - T(2*n-1, k) = 2 for 1 <= k < 2*n.
Row sums: A006003(n) - (-1)^n * 2 * floor((n-1)/2) * (1 + floor((n-1)/2)) for n > 0. - Werner Schulte, Dec 03 2023
Comments