cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A217131 Numbers n such that 7^n - 8 is prime.

Original entry on oeis.org

2, 4, 8, 10, 50, 106, 182, 293, 964, 1108, 1654, 1756, 4601, 8870, 15100, 17446, 22742, 34570, 50150, 95276
Offset: 1

Views

Author

Vincenzo Librandi, Oct 01 2012

Keywords

Comments

a(21) > 10^5. - Robert Price, Jan 23 2014

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 5000], PrimeQ[7^#  - 8] &]
  • PARI
    for(n=1, 5*10^3, if(isprime(7^n-8), print1(n, ", ")))

Extensions

a(14)-a(20) from Robert Price, Jan 23 2014

A152213 Numbers n such that 7^n + 12 is prime.

Original entry on oeis.org

0, 1, 2, 9, 66, 164, 221, 224, 2058, 3224, 12284, 13457, 22277, 22761, 83381
Offset: 1

Views

Author

Huseyin Azoguz (huseyin(AT)mmnetz.de), Nov 29 2008

Keywords

Comments

a(16) > 10^5. - Robert Price, Jan 24 2014

Crossrefs

Programs

Extensions

a(11)-a(15) from Robert Price, Jan 24 2014

A217132 Numbers n such that 7^n + 10 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 11, 26, 29, 41, 53, 55, 84, 86, 144, 179, 229, 238, 414, 616, 1158, 4111, 5577, 13237, 15244, 48578, 66074
Offset: 1

Views

Author

Vincenzo Librandi, Oct 01 2012

Keywords

Comments

a(29) > 10^5. - Robert Price, Jan 24 2014

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 3000], PrimeQ[7^# + 10] &]
  • PARI
    for(n=1, 3*10^3, if(isprime(7^n+10), print1(n", ")))

Extensions

a(23)-a(28) from Robert Price, Jan 24 2014

A236371 Numbers n such that 7^n - 12 is prime.

Original entry on oeis.org

2, 3, 4, 12, 27, 28, 34, 36, 147, 179, 242, 276, 278, 466, 735, 2371, 4548, 5606, 10324, 82899
Offset: 1

Views

Author

Robert Price, Jan 23 2014

Keywords

Comments

a(21) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 100000], PrimeQ[7^# - 12] &]
  • PARI
    for(n=1, 5*10^5, if(isprime(7^n-12), print1(n, ", ")))

A130652 a(n) = 11^n - 2.

Original entry on oeis.org

9, 119, 1329, 14639, 161049, 1771559, 19487169, 214358879, 2357947689, 25937424599, 285311670609, 3138428376719, 34522712143929, 379749833583239, 4177248169415649, 45949729863572159, 505447028499293769, 5559917313492231479, 61159090448414546289, 672749994932560009199
Offset: 1

Views

Author

Alexander Adamchuk, Jun 20 2007

Keywords

Comments

There are only two known primes in a(n): a(4) = 14639 and a(6) = 1771559 (see A128472 = smallest prime of the form (2n-1)^k - 2 for k > (2n-1), or 0 if no such number exists). 3 divides a(2k-1). 7 divides a(3k-1). 13 divides a(12k-5). 17 divides a(16k-14).
Final digit of a(n) is 9.
Final two digits of a(n) are periodic with period 10: a(n) mod 100 = {09, 19, 29, 39, 49, 59, 69, 79, 89, 99}.
Final three digits of a(n) are periodic with period 50: a(n) mod 1000 = {009, 119, 329, 639, 049, 559, 169, 879, 689, 599, 609, 719, 929, 239, 649, 159, 769, 479, 289, 199, 209, 319, 529, 839, 249, 759, 369, 079, 889, 799, 809, 919, 129, 439, 849, 359, 969, 679, 489, 399, 409, 519, 729, 039, 449, 959, 569, 279, 089, 999}.

Crossrefs

Cf. A001020, A024127, A034524. Cf. A104096 = Largest prime <= 11^n. Cf. A084714 = smallest prime of the form (2n-1)^k - 2, or 0 if no such number exists. Cf. A128472 = smallest prime of the form (2n-1)^k - 2 for k>(2n-1), or 0 if no such number exists. Cf. A014224, A109080, A090669, A128455, A128457, A128458, A128459, A128460, A128461.

Programs

  • Magma
    [11^n - 2: n in [1..50]]; // Vincenzo Librandi, Jun 08 2011
  • Mathematica
    LinearRecurrence[{12, -11},{9, 119},17] (* Ray Chandler, Aug 26 2015 *)

Formula

a(n) = 11*a(n-1) + 20; a(1)=9. - Vincenzo Librandi, Jun 08 2011
From Elmo R. Oliveira, Jun 16 2025: (Start)
G.f.: x*(11*x+9)/((11*x-1)*(x-1)).
E.g.f.: 1 + exp(x)*(exp(10*x) - 2).
a(n) = 12*a(n-1) - 11*a(n-2) for n > 2. (End)

A133858 Primes of the form 11^k - 2.

Original entry on oeis.org

14639, 1771559
Offset: 1

Views

Author

Alexander Adamchuk, Sep 27 2007

Keywords

Comments

Last digit of all terms is 9.
The nest term (11^22420-2) is too large to be displayed; see A133982 for the corresponding k. - Joerg Arndt, Nov 28 2020

Examples

			a(1) = 11^4 - 2 = 14639,
a(2) = 11^6 - 2 = 1771559.
		

Crossrefs

Cf. A104096 (largest prime <= 11^n), A130652, A128472, A084714 (smallest prime of the form (2n-1)^k - 2).

A155899 Square matrix T(m,n)=1 if (2m+1)^(2n-1)-2 is prime, 0 otherwise; read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

M. F. Hasler, Feb 01 2009

Keywords

Comments

In some sense the "minimal" possible generalization of the pattern of Mersenne primes (cf. A000043) is to consider powers of odd numbers minus 2. Here only odd powers are considered.

Crossrefs

Programs

  • PARI
    T = matrix( 19,19,m,n, isprime((2*m+1)^(2*n-1)-2)) ;
    A155899 = concat( vector( vecmin( matsize(T)), i, vector( i, j, T[j,i-j+1])))

A093612 Primes of form 7^n-2.

Original entry on oeis.org

5, 47, 2399, 823541, 5764799, 13841287199, 4747561509941, 459986536544739960976799, 157775382034845806615042741, 97327453648743672783790144527749033795901408624680013074608083129650399
Offset: 1

Views

Author

Arnaud Vernier, May 23 2004

Keywords

Comments

The exponents n are listed in A090669, cf. formula. [From M. F. Hasler, Nov 26 2009]
The next term (a(11)) has 83 digits. - Harvey P. Dale, Nov 14 2014

Crossrefs

Cf. A014232.

Programs

  • Mathematica
    Select[7^Range[90]-2,PrimeQ] (* Harvey P. Dale, Nov 14 2014 *)

Formula

a(n)=7^A090669(n)-2. [From M. F. Hasler, Nov 26 2009]

Extensions

Terms beyond a(6) from M. F. Hasler, Nov 26 2009

A133856 Least number k > (2n-1) such that (2n-1)^k - 2 is prime, or 0 if no such number exists.

Original entry on oeis.org

0, 4, 14, 8, 11, 22420, 78, 17, 24, 20, 25, 24, 63, 30, 42, 69, 128, 50, 119, 204, 2816, 76, 52, 288, 64, 66, 184, 153, 67, 268, 78, 210, 438, 295, 96, 74, 136, 128, 2900, 1898, 130, 92, 381, 106, 18626, 97, 98, 1650, 747, 109, 214, 113, 312, 354, 1702, 560, 2798, 123, 171, 554, 11210, 834, 208, 990, 9271
Offset: 1

Views

Author

Alexander Adamchuk, Oct 01 2007

Keywords

Comments

a(66) > 40000. - Robert Price, Mar 02 2015

Crossrefs

Cf. A128472 (smallest prime of the form (2n-1)^k - 2 for k > (2n-1), or 0 if no such number exists).
Cf. A084714 (smallest prime of the form (2n-1)^k - 2, or 0 if no such number exists).

Formula

A128472(n) = (2n-1)^a(n) - 2 for n > 1.

Extensions

a(6) = 22420 was found by Rick L. Shepherd, Sep 29 2009
a(21)-a(44) from Max Alekseyev, Oct 04 2007
a(45)-a(65) from Robert Price, Mar 02 2015

A147782 Primes p such that 7^p - 2 is prime.

Original entry on oeis.org

2, 7, 31, 859
Offset: 1

Views

Author

Cino Hilliard, Nov 12 2008

Keywords

Comments

m=7 in the PARI script. 13 is the next base prime for which this condition holds. In fact, the base prime q in q^p-2 is prime must be of the form 6n+1.
This follows from the fact that if q = 6n-1, the binomial q^p = (6n-1)^p = 6h-1 for some h and q^p-2 = 6h-1-2 is divisible by 3 and thus not prime.
a(5) > 90263. - J.W.L. (Jan) Eerland, Dec 11 2022
a(5) > 274120 using A090669. - Michael S. Branicky, Jul 07 2024

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[150]],PrimeQ[7^#-2]&] (* Harvey P. Dale, Feb 20 2013 *)
  • PARI
    g(n,m)=forprime(p=2,n,y=m^p-2;if(ispseudoprime(y),print1(p",")))

Formula

A000040 INTERSECT A090669. - R. J. Mathar, Jan 22 2009

Extensions

Offset corrected by Mohammed Yaseen, Jul 20 2023
Previous Showing 11-20 of 25 results. Next