cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A218131 Number of length 8 primitive (=aperiodic or period 8) n-ary words.

Original entry on oeis.org

0, 0, 240, 6480, 65280, 390000, 1678320, 5762400, 16773120, 43040160, 99990000, 214344240, 429960960, 815702160, 1475750640, 2562840000, 4294901760, 6975673920, 11019855600, 16983432720, 25599840000, 37822664880, 54875639280, 78310705440, 110074982400
Offset: 0

Views

Author

Alois P. Heinz, Oct 21 2012

Keywords

Crossrefs

Row n=8 of A143324.

Programs

  • Maple
    a:= n-> (n^4-1)*n^4:
    seq(a(n), n=0..30);
  • Mathematica
    Table[n^8 - n^4, {n, 0, 30}] (* Wesley Ivan Hurt, Mar 30 2017 *)

Formula

G.f.: -240*x^2*(x+1)*(x^4+17*x^3+48*x^2+17*x+1)/(x-1)^9.
a(n) = n^8-n^4.
From Amiram Eldar, Jan 12 2021: (Start)
Sum_{n>=2} 1/a(n) = 15/8 - Pi^4/90 - Pi*coth(Pi)/4.
Sum_{n>=2} (-1)^n/a(n) = -7/8 + 7*Pi^4/720 - Pi*csch(Pi)/4 = -7/8 + A267315 - (1/4) * A090986. (End)

A364356 Decimal expansion of negative value of function Gamma(-A364355 + i*sqrt(1-A364355^2)).

Original entry on oeis.org

6, 7, 4, 9, 3, 3, 2, 4, 7, 0, 4, 4, 9, 9, 0, 5, 9, 6, 3, 5, 3, 1, 0, 0, 4, 4, 6, 9, 5, 4, 7, 2, 2, 1, 6, 4, 2, 5, 3, 7, 4, 9, 7, 5, 6, 2, 7, 7, 8, 7, 6, 6, 1, 1, 9, 2, 8, 7, 3, 0, 3, 2, 8, 9, 4, 1, 0, 6, 4, 8, 6, 5, 9, 1, 9, 3, 3, 5, 3, 9, 9, 3, 9, 1, 4, 4, 2, 1, 3, 1, 4, 1, 5, 6, 8, 0, 9, 1, 6, 2, 0, 6, 7, 9, 7
Offset: 0

Views

Author

Artur Jasinski, Aug 08 2023

Keywords

Comments

Only for x = A364355 = 0.54197987169489060244332278779... the Gamma(-x + i*sqrt(1-x^2)) is a real number and -1 < x < 1 (for one case is an imaginary number see A364821 and for other values x is a complex number).

Examples

			Gamma(-A364355 + i*sqrt(1-A364355^2)) = -0.6749332470449905963531...
		

Crossrefs

Programs

  • Mathematica
    xmin=x /. FindRoot[Im[Gamma[-x + I Sqrt[1 - x^2]]], {x, 0.5}, WorkingPrecision -> 106];RealDigits[Re[-Gamma[-x + I Sqrt[1 - x^2]]/. x->xmin]][[1]]

A364821 Decimal expansion of the unique value of x such that Gamma(x + i*sqrt(1-x^2)) is an imaginary number and -1 < x < 1.

Original entry on oeis.org

1, 4, 9, 9, 6, 5, 9, 7, 4, 6, 0, 6, 4, 9, 1, 0, 8, 9, 8, 5, 3, 0, 9, 7, 0, 5, 3, 6, 6, 4, 1, 4, 5, 7, 3, 6, 6, 8, 7, 4, 1, 8, 4, 1, 0, 2, 3, 9, 9, 6, 9, 7, 4, 2, 9, 1, 1, 7, 8, 3, 1, 4, 7, 5, 5, 9, 8, 7, 2, 4, 7, 9, 7, 8, 9, 3, 9, 0, 2, 7, 0, 7, 3, 4, 1, 4, 6, 4, 6, 4, 2, 5, 3, 6, 5, 3, 0, 0, 8, 1, 0, 3, 6, 5, 8, 2
Offset: 0

Views

Author

Artur Jasinski, Oct 07 2023

Keywords

Comments

Gamma(A364821 + i*sqrt(1-A364821^2)) = -i*0.5377003887835295919... see A366345.
Also decimal expansion of the unique value of x in the range -1 < x < 1 for which the function Im(Gamma(x + i*sqrt(1-x^2)))/abs(Gamma(x + i*sqrt(1-x^2))) is minimized.

Examples

			0.149965974606491...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[
      x /. FindRoot[Re[Gamma[x + I Sqrt[1 - x^2]]], {x, 0.15},
        WorkingPrecision -> 106]][[1]]

Extensions

Last digit corrected by Vaclav Kotesovec, Sep 02 2025

A144663 Decimal expansion of Product_{n>=2} (n^4-1)/(n^4+1).

Original entry on oeis.org

8, 4, 8, 0, 5, 4, 0, 4, 9, 3, 5, 2, 9, 0, 0, 3, 9, 2, 1, 2, 9, 6, 5, 0, 1, 8, 3, 4, 0, 5, 0, 0, 7, 7, 0, 5, 8, 4, 7, 9, 8, 7, 4, 8, 6, 8, 8, 4, 7, 1, 7, 6, 6, 6, 4, 3, 0, 6, 9, 6, 4, 5, 3, 8, 0, 6, 6, 1, 3, 5, 7, 2, 8, 5, 5, 5, 5, 4, 4, 1, 2, 7, 1, 3, 6, 7, 6, 6, 3, 7, 6, 7, 3, 6, 9, 0, 1, 2, 5, 2, 9, 5, 8, 7, 6
Offset: 0

Views

Author

R. J. Mathar, Feb 01 2009

Keywords

Examples

			0.8480540493529003921296501834...
		

Crossrefs

Programs

  • Maple
    Digits := 120 :
    m := 1:
    for r from 2 to 10 do
    omega := cos(Pi/r)+I*sin(Pi/r) :
    x := (-1)^(m+1)*2*m*m!/r*mul( GAMMA(-m*omega^j)^(-(-1)^j),j=1..2*r-1) ;
    x := Re(evalf(x)) ;
    print(r,x) ;
    od:
  • Mathematica
    RealDigits[ -1/2*Pi*Csc[(-1)^(1/4)*Pi]*Csc[(-1)^(3/4)*Pi]*Sinh[Pi] // Re, 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)
    RealDigits[Re[N[Product[(n^4 - 1)/(n^4 + 1), {n, 2, Infinity}], 110]]][[1]] (* Bruno Berselli, Apr 02 2013 *)
  • PARI
    Pi*sinh(Pi)/(cosh(Pi*sqrt(2))-cos(Pi*sqrt(2))) \\ Michel Marcus, Sep 07 2020

Formula

Equals Pi*sinh(Pi) / (cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi)). - Vaclav Kotesovec, Dec 08 2015

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A144664 Decimal expansion of Product_{n>=2} (n^5-1)/(n^5+1).

Original entry on oeis.org

9, 2, 8, 7, 8, 6, 9, 3, 5, 7, 9, 9, 5, 5, 2, 4, 5, 3, 7, 5, 1, 4, 6, 9, 9, 1, 5, 6, 5, 2, 8, 5, 2, 3, 5, 1, 9, 3, 2, 0, 1, 0, 1, 5, 0, 3, 7, 5, 3, 0, 4, 1, 1, 8, 2, 0, 1, 0, 2, 8, 2, 6, 5, 1, 4, 8, 7, 2, 0, 0, 7, 3, 7, 9, 9, 1, 6, 0, 2, 2, 3, 8, 8, 2, 7, 4, 1, 5, 5, 1, 8, 1, 0, 8, 4, 1, 9, 2, 7, 8, 2, 5, 1, 0, 5, 9, 7, 2, 6, 2
Offset: 0

Views

Author

R. J. Mathar, Feb 01 2009

Keywords

Examples

			0.92878693579955245375146991...
		

Crossrefs

Programs

  • Mathematica
    p = 2*Gamma[2-(-1)^(1/5)] * Gamma[2+(-1)^(2/5)] * Gamma[2-(-1)^(3/5)] * Gamma[2+(-1)^(4/5)] / (Gamma[2+(-1)^(1/5)] * Gamma[2-(-1)^(2/5)] * Gamma[2+(-1)^(3/5)] * Gamma[2-(-1)^(4/5)]); RealDigits[Re[p], 10, 110][[1]] (* Jean-François Alcover, Feb 11 2013, updated Nov 18 2015 *)
    RealDigits[Re[N[Product[(n^5 - 1)/(n^5 + 1), {n, 2, Infinity}], 110]]][[1]] (* Bruno Berselli, Apr 02 2013 *)

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A308718 Decimal expansion of Pi*sech(Pi/2)/2.

Original entry on oeis.org

6, 2, 6, 0, 2, 0, 1, 6, 5, 6, 2, 6, 0, 7, 3, 8, 1, 1, 5, 4, 4, 1, 7, 1, 4, 9, 8, 2, 1, 6, 3, 4, 4, 4, 3, 0, 7, 5, 8, 3, 5, 7, 7, 8, 5, 5, 9, 1, 7, 0, 3, 6, 5, 4, 5, 5, 3, 3, 5, 9, 8, 7, 9, 7, 1, 6, 9, 8, 0, 3, 7, 4, 5, 6, 6, 0, 8, 7, 3, 1, 7, 2, 1, 6, 2, 7, 0, 3, 6, 4, 5, 1, 4, 5, 1, 6, 2, 8, 1, 3, 2, 8, 3, 4, 9, 3, 4, 0, 2, 1, 2, 9, 2, 4, 8, 5, 5, 8, 1, 7
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 19 2019

Keywords

Examples

			0.6260201656260738115441714982163444307583577855917...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi Sech[Pi/2]/2, 10, 120][[1]]
  • PARI
    Pi*(1/cosh(Pi/2))/2 \\ Michel Marcus, Jun 20 2019

Formula

Equals Product_{k>=1} 1/(1 - (-1)^k/k^2).
Equals Product_{k>=1} (1 - 1/(2*k*(k + 1) + 1)).
Equals Product_{k>=1} (1 - 1/A001844(k)).
Equals Integral_{x=0..oo} cos(x)/cosh(x) dx. - Amiram Eldar, Aug 10 2020

A144665 Decimal expansion of product_{n=2..infinity} (n^6-1)/(n^6+1).

Original entry on oeis.org

9, 6, 5, 9, 0, 6, 0, 8, 5, 7, 6, 2, 1, 5, 9, 2, 1, 2, 1, 5, 7, 0, 6, 2, 3, 7, 0, 5, 5, 0, 4, 5, 2, 0, 4, 0, 8, 5, 7, 2, 6, 8, 1, 3, 3, 6, 5, 0, 9, 7, 4, 5, 8, 9, 2, 5, 6, 2, 9, 6, 6, 3, 9, 4, 9, 2, 7, 3, 7, 7, 0, 2, 4, 9, 0, 0, 7, 5, 7, 3, 0, 9, 3, 2, 7, 1, 1, 1, 0, 7, 7, 7, 1, 6, 8, 8, 1, 1, 1, 4, 7, 4, 8, 5, 0
Offset: 0

Views

Author

R. J. Mathar, Feb 01 2009

Keywords

Examples

			0.96590608576215921215...
		

Crossrefs

Cf. A090986.

Programs

  • Mathematica
    RealDigits[ -((Pi*(1 + Cosh[Sqrt[3]*Pi])*Csch[Pi])/(3*(Cos[Sqrt[3]*Pi] - Cosh[Pi]))), 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)
  • PARI
    Pi*(cosh(sqrt(3)*Pi)+1)/sinh(Pi)/(cosh(Pi)-cos(sqrt(3)*Pi))/3 \\ - M. F. Hasler, Feb 23 2013

Formula

c=(Pi/3)*(cosh(sqrt(3)*Pi)+1)/(sinh(Pi)*(cosh(Pi)-cos(sqrt(3)*Pi))).

A144666 Decimal expansion of product_{n=2..infinity} (n^7-1)/(n^7+1).

Original entry on oeis.org

9, 8, 3, 4, 3, 9, 7, 8, 0, 5, 8, 6, 9, 2, 8, 2, 3, 5, 1, 1, 4, 4, 8, 7, 5, 5, 3, 5, 5, 4, 0, 1, 3, 6, 3, 5, 3, 7, 3, 1, 5, 4, 1, 6, 2, 8, 6, 8, 8, 3, 1, 1, 2, 1, 9, 0, 3, 7, 6, 0, 4, 5, 0, 8, 1, 6, 2, 7, 9, 9, 7, 0, 5, 5, 9, 7, 3, 9, 2, 0, 6, 7, 5, 7, 9, 3, 9, 7, 5, 0, 0, 4, 0, 2, 9, 4, 1, 3, 8, 7, 5, 3, 4, 5, 5
Offset: 0

Views

Author

R. J. Mathar, Feb 01 2009

Keywords

Examples

			0.9834397805869282351144875535540...
		

Crossrefs

Cf. A090986.

Programs

  • Mathematica
    p = 2*Product[Gamma[2+(-1)^(k+k/7)], {k, 6}]/Product[Gamma[2-(-1)^(k+k/7)], {k, 6}]; RealDigits[Re[p], 10, 105][[1]] (* Jean-François Alcover, Feb 11 2013, updated Nov 18 2015 *)
    RealDigits[Re[N[Product[(n^7 - 1)/(n^7 + 1), {n, 2, Infinity}], 110]]][[1]] (* Bruno Berselli, Apr 02 2013 *)

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A144667 Decimal expansion of product_{n=2..infinity} (n^8-1)/(n^8+1).

Original entry on oeis.org

9, 9, 1, 8, 7, 8, 4, 0, 7, 6, 5, 8, 2, 9, 4, 8, 1, 6, 9, 6, 6, 4, 2, 6, 9, 2, 7, 7, 8, 4, 8, 8, 9, 3, 4, 0, 4, 8, 0, 4, 0, 6, 2, 9, 2, 0, 6, 6, 3, 5, 4, 2, 2, 8, 7, 4, 5, 0, 5, 8, 3, 0, 7, 6, 1, 9, 5, 8, 1, 8, 4, 1, 2, 5, 0, 3, 9, 1, 6, 8, 5, 9, 7, 3, 1, 0, 8, 1, 8, 9, 9, 1, 6, 2, 5, 0, 8, 8, 3, 6, 7, 0, 7, 2, 8
Offset: 0

Views

Author

R. J. Mathar, Feb 01 2009

Keywords

Examples

			0.9918784076582948169664...
		

Crossrefs

Cf. A090986.

Programs

  • Mathematica
    RealDigits[-1/4*Pi*Csc[(-1)^(1/8)*Pi]*Csc[(-1)^(3/8)*Pi]*Csc[(-1)^(5/8)*Pi] * Csc[(-1)^(7/8)*Pi]*Sin[(-1)^(1/4)*Pi]*Sin[(-1)^(3/4)*Pi]*Sinh[Pi] // Re, 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)

Formula

Equals 2*A175619/A334411. - Vaclav Kotesovec, Apr 27 2020

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A366345 Decimal expansion of y such that Gamma(A364821 + i*sqrt(1-A364821^2)) = -y*i.

Original entry on oeis.org

5, 3, 7, 7, 0, 0, 3, 8, 8, 7, 8, 3, 5, 2, 9, 5, 9, 1, 9, 0, 4, 6, 0, 0, 7, 9, 5, 7, 7, 3, 9, 5, 0, 2, 5, 5, 4, 9, 4, 4, 2, 7, 7, 5, 6, 1, 7, 4, 1, 5, 9, 3, 2, 4, 2, 7, 3, 9, 7, 1, 3, 6, 0, 9, 0, 6, 1, 3, 8, 3, 9, 6, 2, 6, 6, 4, 4, 9, 0, 7, 5, 7, 0, 0, 3, 2, 2, 4, 8, 3, 1, 8, 7, 3, 4, 8, 5, 6, 0, 0, 4, 6, 7, 5, 0, 3
Offset: 0

Views

Author

Artur Jasinski, Oct 07 2023

Keywords

Comments

x = A364821 = 0.149965974606491089853... is the only real number x such that Gamma(x + i*sqrt(1-x^2)) is an imaginary number and -1 < x < 1.

Examples

			Gamma(A364821 + i*sqrt(1-A364821^2)) = -i*0.5377003887835295919046...
		

Crossrefs

Previous Showing 11-20 of 28 results. Next