cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A121448 Triangle read by rows: T(n,k) is the number of binary trees with n edges and having k vertices of outdegree 1 (n>=0, k>=0). A binary tree is a rooted tree in which each vertex has at most two children and each child of a vertex is designated as its left or right child.

Original entry on oeis.org

1, 0, 2, 1, 0, 4, 0, 6, 0, 8, 2, 0, 24, 0, 16, 0, 20, 0, 80, 0, 32, 5, 0, 120, 0, 240, 0, 64, 0, 70, 0, 560, 0, 672, 0, 128, 14, 0, 560, 0, 2240, 0, 1792, 0, 256, 0, 252, 0, 3360, 0, 8064, 0, 4608, 0, 512, 42, 0, 2520, 0, 16800, 0, 26880, 0, 11520, 0, 1024, 0, 924, 0, 18480, 0
Offset: 0

Views

Author

Emeric Deutsch, Jul 31 2006

Keywords

Comments

T(2n,0) = binomial(2n,n)/(n+1) (the Catalan numbers; A000108); T(2n+1,0)=0. T(n,n)=2^n (A000079). Sum(k*T(n,k),k=0..n)=2*binomial(2n,n-1)=2*A001791(n). After deleting the zeros, reflection of A091894.
From Tom Copeland, Feb 07 2016: (Start)
A shifted o.g.f. is OG(x,t) = [1 - 2tx - sqrt[(1-2tx)^2-4x^2]] / (2x) = x + 2t x^2 + (1+4t^2) x^3 + ... with compositional inverse OGinv(x,t) = x / (1 + 2tx + x^2), the shifted o.g.f. for A053117 (mod signs).
For x > 0 and choosing the positive square root, OG(x^2,t) = H(x,t) = x^2 + 2t x^4 + (1+4t^2) x^6 + ... has the compositional inverse Hinv(x,t) = sqrt[x / (1 + 2tx + x^2)] , which satisfies Hinv(H(x, t), t) = x, and which is the generating function for the Legendre polynomials (mod signs, cf. A008316) times sqrt(x).
In general, GB(x,t,b) = [x / (1 - 2tx + x^2)]^b is a generator for the Gegenbauer polynomials times x^b for positive roots with compositional inverse about the origin GBinv(x,t,b) = OG(x^(1/b),-t) for x>0. Cf. A097610.
(End)
From Tom Copeland, Feb 09 2016: (Start)
z1 = OG(x,t) is the zero that vanishes for x=0 for the quadratic polynomial Q(z;z1(x,t),z2(x,t)) =(z-z1)(z-z2) = z^2 - (z1+z2) z + (z1*z2) = z^2 - e1 z + e2 = z^2 - [(1-2tx)/x] z + 1, where e1 and e2 are the elementary symmetric polynomials for two indeterminates.
The other zero is given by z2(x,t) = [1 - 2tx + sqrt[(1-2tx)^2-4x^2]] / (2x) = (1 - 2tx)/x - z1(x,t).
The two are zeros of the elliptic curve in Legendre normal form y^2 = z (z-z1)(z-z2). (Added Feb 13 2016. See Landweber et al., p 14. Cf. A097610.)
(End)

Examples

			T(2,2)=4 because, denoting by L (R) an edge going from a vertex to a left (right) child, we have the paths: LL, LR, RL and RR.
Triangle starts:
  1;
  0,2;
  1,0,4;
  0,6,0,8;
  2,0,24,0,16;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n-k mod 2 = 0 then 2^k*binomial(n+1,k)*binomial(n+1-k,(n-k)/2)/(n+1) else 0 fi end: for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    nn=10;Drop[CoefficientList[Series[(1-2x y - ((-4x^2+(1-2x y)^2))^(1/2))/(2 x),{x,0,nn}],{x,y}],1]//Grid  (* Geoffrey Critzer, Feb 20 2013 *)

Formula

T(n,k) = 2^k*binomial(n+1,k)binomial(n+1-k,(n-k)/2)/(n+1) if n-k is even; otherwise, T(n,k) = 0. G.f. G=G(t,z) satisfies G=1+2tzG+z^2*G^2.
T(n,k) = 2^k*A097610(n,k). - Philippe Deléham, Aug 17 2006
From Tom Copeland, Feb 09 2016: (Start)
The following is from the formalism in A097610 with h1 = 2t, h2 = 1, and MT(n,h1,h2) = MT(n,2t,1) and with OG(x,t) defined above.
E.g.f.: M(x,t) = e^(2tx) AC(x) = exp[x MT(.,2t,1)] = exp[x P(.,t)], where AC(x) = I_1(2x)/x = Sum_{n>=0} x^(2n)/(n!(n+1)!) = exp(c.x) is the e.g.f. of A126120.
P(n,t) = MT(n,2t,1) = (c. + 2t)^n = Sum_{k=0..n} binomial(n,k) c(n-k) (2t)^k with c(k) = A126120(k). P(n,t+s) = (c. + 2t + 2s)^n = (P(.,t) + 2s)^n.
P(n,t) = t^n FC(n,c./t) = t^n (2 + c./t)^n, where FC(n,t) = (2 + t)^n are the face polynomials (vectors) of the hypercubes of A038207, i.e., the row polynomials of this entry can be obtained as the umbral composition of the reverse face polynomials with the aerated Catalan numbers of A000108.
The lowering and raising operators for the row polynomials P(n,t) of this entry are L = (1/2) d/dt = (1/2) D and R = 2t + dlog{AC(L)}/dL = 2t + Sum_{n>=0} b(n) L^(2n+1)/(2n+1)! = 2t + L - L^3/3! + 5 L^5/5! - ... with b(n) = (-1)^n A180874(n+1).
Let CP(n,t) = P(n+1,t) with CP(0,t) = 0. Then the infinitesimal generator for CP(n,t) is g(x) d/dx with g(x) = 1 /[dOGinv(x,t)/dx] = x^2 / [(OGinv(x,t))^2 (1 - x^2)] = (1 + 2t x + x^2)^2 / (1 - x^2) so that [g(x)d/dx]^n/n! x evaluated at x = 0 gives the row polynomial CP(n,t), i.e., exp[x g(u)d/du] u |_(u=0) = OG(x,t) = 1 /[1 - x P(.,t)]. Cf. A145271.
g(x) = 1 + 4t x + (3+4t) x^2 + 8t x^3 + 4(1+t^2) x^4 + 8t x^5 + 4(1+t^2) x^6 + 8t x^7 + ... has the repeating coefficients of the vector V = (1, 4t, 3+4t, 8t, 4(1+t^2), 8t, 4(1+t^2), 8t, ...). Form the lower triangular matrix U with all ones on the diagonal and below. Multiply the n-th diagonal of U by V(n), giving the matrix VU with VU(n,k) = V(n-k). Then (1,0,0,0,..) [VU * DM]^n/n! (0,1,0,0,..)^T = CP(n,t) = P(n-1,t) for n>0 with DM being the matrix A218272 representing differentiation of a power series.
(End)

A125107 Subtract compositions (A011782) from Catalan numbers (A000108).

Original entry on oeis.org

0, 0, 0, 1, 6, 26, 100, 365, 1302, 4606, 16284, 57762, 205964, 738804, 2666248, 9678461, 35324902, 129579254, 477507628, 1767001046, 6563596132, 24465218444, 91480466488, 343055419346, 1289895758716, 4861929624236, 18367319517720, 69533483807140, 263747817532632
Offset: 0

Views

Author

Alford Arnold, Dec 15 2006

Keywords

Comments

Apparently the number of Dyck n-paths with more than half of the path lying between the first and last peaks. - David Scambler, Sep 14 2012
From Peter Luschny, Nov 28 2024: (Start)
A Touchard walk T(n) of length n is, as defined by Dershowitz, "a sequence of n steps, each of which is one of N/S/E/W, such that at each point along the way the number of N-steps that have been taken is never less than the number of S-steps, and are in the end equal."
There are Sum_{k=0..n} binomial(n, k) Touchard walks that have no N/S-steps at all and since by Touchard's identity T(n) = Catalan(n+1), it follows that a(n) = T(n-1) - Sum_{k=0..n-1} binomial(n-1, k) = Catalan(n) - 2^(n-1) for n >= 1. Thus a(n+1) is the number of Touchard walks of length n that have at least one N-step. (End)

Examples

			A000108 begins 1 1 2 5 14 42 132 429 ...
A011782 begins 1 1 2 4  8 16  32  64 ...
so we get .... 0 0 0 1  6 26 100 365 ...
.
The 26 Touchard walks of length 4 that have at least one N-step are:
   NNSS, NSNS, NSEE, NSEW, NSWE, NSWW, NESE, NESW, NWSE,
   NWSW, NEES, NEWS, NWES, NWWS, ENSE, ENSW, WNSE, WNSW,
   ENES, ENWS, WNES, WNWS, EENS, EWNS, WENS, WWNS.
		

Crossrefs

Cf. A000079, A000108, A000110, A011782, A016098, A097805, A091894 (Touchard distribution), A377659 (similar with Motzkin).

Programs

  • Maple
    # From Peter Luschny, Nov 28 2024: (Start)
    a := n -> ifelse(n = 0, 0, binomial(2*n, n)/(n+1) - 2^(n-1)): seq(a(n), n = 0..28);
    # Series expansion:
    gf := (1 - sqrt(1 - 4*x)) / (2*x) - (1 - x) / (1 - 2*x): ser := series(gf, x, 30): seq(coeff(ser, x, n), n = 0..28);
    # Evaluating polynomials:
    p := (n, x) -> ifelse(n = 0, 0, 2^(n-1)*(hypergeom([1 - n/2, 1/2 - n/2], [2], x) - 1)): seq(subs(x = 1, expand(simplify(p(n, x)))), n = 0..28);  # (End)
  • Mathematica
    Table[CatalanNumber[n] - If[n==0, 1, 2^(n-1)], {n, 0, 30}] (* David Scambler, Sep 14 2012 *)
  • Python
    # Generates the walks (for illustration only).
    C = str.count
    def aGen(n: int) -> Generator[str, Any, list[str]]:
        a = [""]
        if n <= 0: return a
        for w in a:
            if len(w) == n - 1:
                if C(w, "N") > 0 and C(w, "N") == C(w, "S"):
                    yield w
            else:
                for j in "NSEW":
                    U = w + j
                    if C(U, "N") >= C(U, "S"):
                        a += [U]
        return a
    for n in range(6): print([w for w in aGen(n)])  # Peter Luschny, Dec 03 2024

Formula

a(n) = A000108(n) - A011782(n).
(n+1)*a(n) + 2*(1-4*n)*a(n-1) + 4*(5*n-7)*a(n-2) + 8*(5-2*n)*a(n-3) = 0. - R. J. Mathar, Aug 10 2013
From Peter Luschny, Nov 28 2024: (Start)
a(n) = [x^n] (1 - sqrt(1 - 4*x)) / (2*x) - (1 - x) / (1 - 2*x).
a(n) = n! * [x^n] (exp(2*x)*(BesselI_{0}(2*x) - BesselI_{1}(2*x) - 1/2) - 1/2).
a(n) = p(n, 1) for n >= 1, where p(n, x) = 2^(n-1)*(hypergeom([1-n/2, (1-n)/2], [2], x) - 1).
a(n) = Sum_{k=0..n} (A091894(n, k) - A097805(n, n-k)). (End)

Extensions

More terms from David Scambler, Sep 14 2012

A127529 Triangle read by rows: T(n,k) is the number of ordered trees with n edges and jump-length equal to k (n >= 0, 0 <= k <= n-2).

Original entry on oeis.org

1, 1, 2, 4, 1, 8, 5, 1, 16, 17, 8, 1, 32, 49, 38, 12, 1, 64, 129, 141, 77, 17, 1, 128, 321, 453, 361, 143, 23, 1, 256, 769, 1326, 1399, 834, 247, 30, 1, 512, 1793, 3640, 4776, 3869, 1765, 402, 38, 1, 1024, 4097, 9539, 14911, 15353, 9722, 3469, 623, 47, 1, 2048, 9217
Offset: 0

Views

Author

Emeric Deutsch, Jan 18 2007

Keywords

Comments

In the preorder traversal of an ordered tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump; the positive difference of the levels is called the jump distance; the sum of the jump distances in a given ordered tree is called the jump-length.
Rows 0 and 1 have one term each; row n (n >= 2) has n-1 terms.
Row sums are the Catalan numbers (A000108).
T(n,0) = A011782(n).
T(n,1) = A000337(n-2).
Sum_{k>=0} k*T(n,k) = binomial(2n-1, n-3) = A003516(n-1) for n >= 3.
The distribution of the statistic "number of jumps" is given in A091894. The average jump distance in all ordered trees with n edges is 2 - 5/(n+2) (i.e., about 2 levels for n large). The Krandick reference considers jump-length for full binary trees.
Also the number of Dyck n-paths with k valleys at height >= 1. - David Scambler, Sep 01 2011
Triangle T(n,k), with zeros omitted, given by (1,1,0,1,0,1,0,1,0,1,0,1,...) DELTA (0,0,1,0,1,0,1,0,1,0,1,0,1,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 06 2012

Examples

			Triangle starts:
   1;
   1;
   2;
   4,  1;
   8,  5,  1;
  16, 17,  8,  1;
  32, 49, 38, 12, 1;
Triangle (1,1,0,1,0,1,0,1,0,1, ...) DELTA (0,0,1,0,1,0,1,0,1,0,1,0,...) begins:
   1;
   1,   0;
   2,   0,   0;
   4,   1,   0,  0;
   8,   5,   1,  0,  0;
  16,  17,   8,  1,  0, 0;
  32,  49,  38, 12,  1, 0, 0;
  64, 129, 141, 77, 17, 1, 0, 0; ... - _Philippe Deléham_, Feb 06 2012
		

Crossrefs

Programs

  • Maple
    G:=1/2/(1-2*z-t+t*z)*(-2*t+1+t*z-z+sqrt(-2*t*z+1-2*z+t^2*z^2-2*t*z^2+z^2)): Gser:=simplify(series(G,z=0,13)): for n from 0 to 12 do P[n]:=sort(coeff(Gser,z,n)) od: 1;1;for n from 2 to 12 do seq(coeff(P[n],t,j),j=0..n-2) od; # yields sequence in triangular form
  • Mathematica
    n = 12; g[t_, z_] := 1/2/(1 - 2z - t + t*z)*(-2t + 1 + t*z - z + Sqrt[-2t*z + 1 - 2z + t^2*z^2 - 2t*z^2 + z^2]); Flatten[ CoefficientList[#, t]&  /@ CoefficientList[ Simplify[Series[g[t, z], {z, 0, n}]], z]] (* Jean-François Alcover, Jul 22 2011, after g.f. *)
  • Maxima
    T(n,m):=if n=0 and m=0 then 1 else if n=0 then 0 else sum(k*binomial(n,m+k)*binomial(n-k-1,m),k,0,n-m)/(n); /* Vladimir Kruchinin, Oct 29 2020 */

Formula

G.f.: G=G(t,z) satisfies (1 - t - 2*z + t*z)*G^2 - (1 - 2*t - z + t*z)*G - t = 0.
T(n,m) = Sum_{k=0..n-m} k*C(n,m+k)*C(n-k-1,m)/n, n>0, T(0,0)=1. - Vladimir Kruchinin, Oct 29 2020

A152225 Number of Dyck paths of semilength n with no peaks at height 0 (mod 3) and no valleys at height 2 (mod 3).

Original entry on oeis.org

1, 1, 2, 4, 9, 22, 56, 146, 388, 1048, 2869, 7942, 22192, 62510, 177308, 506008, 1451866, 4185788, 12119696, 35227748, 102753800, 300672368, 882373261, 2596389190, 7658677856, 22642421206, 67081765932, 199128719896, 592179010350, 1764044315540, 5263275015120
Offset: 0

Views

Author

Majun (majun(AT)math.sinica.edu.tw), Nov 29 2008

Keywords

Comments

The antidiagonal sums of A091894 equal this sequence. - Johannes W. Meijer, Sep 13 2012

Crossrefs

Cf. A091561, A025265, A025247. - R. J. Mathar, Dec 03 2008

Programs

  • Maple
    f:= gfun:-rectoproc({(n+2)*a(n) - 2*(2*n+1)*a(n-1) + 4*(n-1)*a(n-2) + 2*(5-2*n)*a(n-3)=0,a(0)=1,a(1)=1,a(2)=2,a(3)=4},a(n),remember):
    map(f, [$0..40]); # Robert Israel, Jan 09 2018
  • Mathematica
    CoefficientList[Series[(1 - 2 x + 2 x^2 - Sqrt[1 - 4 x + 4 x^2 - 4 x^3])/(2 x^2), {x, 0, 30}], x] (* Michael De Vlieger, Jan 09 2018 *)

Formula

G.f.: (1 - 2*x + 2*x^2 - sqrt(1 - 4*x + 4*x^2 - 4*x^3))/(2*x^2).
Conjecture: (n+2)*a(n) - 2*(2*n+1)*a(n-1) + 4*(n-1)*a(n-2) + 2*(5-2*n)*a(n-3)=0. - R. J. Mathar, Aug 14 2012
This conjecture follows from the differential equation (4*x^4-4*x^3+4*x^2-x)*y' + (2*x^3-4*x^2+6*x-2)*y - 2*x^3+2*x^2-3*x+2=0 satisfied by the g.f. - Robert Israel, Jan 09 2018

Extensions

Edited by Emeric Deutsch, Dec 20 2008

A236406 Triangle read by rows: number of (1-2-3)-avoiding permutations on n letters with k peaks.

Original entry on oeis.org

1, 1, 2, 3, 2, 4, 10, 5, 32, 5, 6, 84, 42, 7, 198, 210, 14, 8, 438, 816, 168, 9, 932, 2727, 1152, 42, 10, 1936, 8250, 5940, 660, 11, 3962, 23276, 25630, 5775, 132, 12, 8034, 62400, 97812, 37180, 2574, 13, 16200, 160953, 341224, 196625, 27456, 429, 14, 32556, 402906, 1111656, 905086, 212212, 10010
Offset: 0

Views

Author

N. J. A. Sloane, Jan 31 2014

Keywords

Comments

This is a convolution of A091156 with itself (see the Pudwell link below).

Examples

			Triangle begins:
   1;
   1;
   2;
   3,    2;
   4,   10;
   5,   32,    5;
   6,   84,   42;
   7,  198,  210,   14;
   8,  438,  816,  168;
   9,  932, 2727, 1152,  42;
  10, 1936, 8250, 5940, 660;
  ...
		

Crossrefs

Row sums give A000108.

Programs

  • Mathematica
    m = maxExponent = 15;
    G = -(-2 z^3 q^2 + 4z^3 q - 2z^3 - 2z^2 q + 2z^2 - 1 + Sqrt[-4z^2 q + 4z^2 - 4z + 1])/(2z (z q - z + 1)^2);
    CoefficientList[# + O[q]^m, q]& /@ CoefficientList[G + O[z]^m, z]// Flatten (* Jean-François Alcover, Aug 06 2018 *)

Formula

T(2*n+2,n) = A276666(n+2) = (n+1)*A000108(n+2). - Alois P. Heinz, Apr 27 2018
G.f.: G(q,z) = - (-2z^3q^2+4z^3q-2z^3-2z^2q+2z^2-1+sqrt(-4z^2q+4z^2-4z+1))/(2z(zq-z+1)^2). (See the Pudwell link above.)

Extensions

More terms from Alois P. Heinz, Apr 26 2018

A319252 Triangle read by rows: T(n,k) is the number of permutations pi of [n] with k+1 valleys such that s(pi) avoids the patterns 132, 231, 312, and 321, where s denotes West's stack-sorting map (0 <= k <= floor((n-1)/2)).

Original entry on oeis.org

1, 2, 4, 2, 8, 10, 16, 36, 4, 32, 112, 36, 64, 320, 200, 10, 128, 864, 880, 130, 256, 2240, 3360, 980, 28, 512, 5632, 11648, 5600, 476, 1024, 13824, 37632, 26880, 4536, 84, 2048, 33280, 115200, 114240, 31920, 1764
Offset: 1

Views

Author

Colin Defant, Sep 15 2018

Keywords

Comments

T(n,k) is the number of permutations of [n] that avoid the patterns 1342, 2341, 3142, 3241, 3412, and 3421 and have k+1 valleys.

Examples

			Triangle begins:
   1;
   2;
   4,   2;
   8,  10;
  16,  36,  4;
  32, 112, 36;
  ...
		

Crossrefs

Row sums give A071721. Cf. A091894, A319251.

Programs

  • Mathematica
    Flatten[Table[Table[(2^(n - 2 (m + 1) + 1)) Binomial[n - 1, 2 m] CatalanNumber[m] + Sum[Sum[(2^((n - i - 1) - 2 j + 1)) Binomial[n - i - 2, 2 j - 2] CatalanNumber[j - 1] (2^(i - 2 (m - j + 1) + 1)) Binomial[i - 1, 2 (m - j + 1) - 2] CatalanNumber[m - j], {j, 1, m}], {i, 1, n - 2}], {m, 0, Floor[(n - 1)/2]}], {n, 1, 12}]]

Formula

T(n,k) = V(n,k+1) + Sum_{i=1..n-2} Sum_{j=1..m} V(n-i-1,j) * V(i,k-j+1), where V(i,j) = 2^{i-2j+1} * (1/j) * binomial(i-1,2j-2) * binomial(2j-2,j-1) are the numbers given in A091894.

A377443 Triangular array T(n,k) read by rows, satisfies A377441(n, k+2) = Sum_{m=0..k} T(k, m)*n^m.

Original entry on oeis.org

2, 5, 1, 14, 6, 1, 42, 27, 8, 1, 132, 111, 45, 10, 1, 429, 441, 222, 67, 12, 1, 1430, 1728, 1029, 382, 93, 14, 1, 4862, 6733, 4608, 2005, 599, 123, 16, 1, 16796, 26181, 20199, 10018, 3495, 881, 157, 18, 1, 58786, 101763, 87270, 48445, 19188, 5641, 1236, 195, 20, 1
Offset: 0

Views

Author

Thomas Scheuerle, Nov 04 2024

Keywords

Examples

			Triangle T(n, k) starts:
[0]     2
[1]     5,      1
[2]    14,      6,     1
[3]    42,     27,     8,     1
[4]   132,    111,    45,    10,     1
[5]   429,    441,   222,    67,    12,    1
[6]  1430,   1728,  1029,   382,    93,   14,    1
[7]  4862,   6733,  4608,  2005,   599,  123,   16,   1
[8] 16796,  26181, 20199, 10018,  3495,  881,  157,  18,  1
[9] 58786, 101763, 87270, 48445, 19188, 5641, 1236, 195, 20, 1
		

Crossrefs

Cf. A254316 (row sums).

Programs

  • PARI
    A377441(n, max_k) = Vec(-2*((n+1)*x-1)/((x-1)*(n*x-1)+((n*x^2-(n+1)*x+1)^2-4*x*(x-1)*((n+1)*x-1)+O(x^max_k))^(1/2)))
    T(n, k) = Vec(A377441(y, n+5)[n+3])[n-k+1]
    
  • PARI
    A091894(n, k) = 2^(n-2*k-1)*binomial(n-1, 2*k)*(binomial(2*k, k)/(k + 1))
    A175136(n, k) = sum(m=0,(n - k)/2,A091894(n-k, m)*binomial(n-m-1, n-k))
    T(n, k) = sum(m=1, n+1-k, A175136(n+2-k, n-m+2-k)*binomial(m+k-1, m-1))+(k==0)

Formula

G.f.: (-(y*x^3-(y+1)*x^2+2*x+1) + sqrt((y*x^3-(y+1)*x^2+x)^2 - 4*(x^3-x^2)*((y+1)*x^2-x)))/(2*(x^3-x^2))/x^2.
T(n, 0) = A000108(n+2).
T(n, 1) = A371965(n+2).
T(n, 2) G.f.: x^2*1/( (x - 1)^2*(1 - 4*x)^(3/2) ).
T(n, 3) G.f.: x^3*(3*x - 1)/( (x - 1)^3*(1 - 4*x)^(5/2) ).
T(n, 4) G.f.: x^4*(x^3 + (3*x - 1)^2)/( (x - 1)^4*(1 - 4*x)^(7/2) ).
T(n, 5) G.f.: x^5*(3*x^3*(3*y - 1) + (3*x - 1)^3)/( (x - 1)^5*(1 - 4*x)^(9/2) ).
T(n, 6) G.f.: x^6*(2*x^6 + 6*x^3*(3*x - 1)^2 + (3*x - 1)^4)/( (x - 1)^6*(1 - 4*x)^(11/2) ).
T(n, 7) G.f.: x^7*(10*x^6*(3*x - 1) + 10*x^3*(3*x - 1)^3 + (3*x - 1)^5)/( (x - 1)^7*(1 - 4*x)^(13/2) ).
0 = Sum_{n=0..k} T(n+k, n)*(-1)^n*binomial(k, n).
The diagonal k terms below main diagonal has G.f.: 1 + Sum_{m=1..k+1} A175136(k+2, k-m+2)*(1 - x)^k.
T(n+k, n) = Sum_{m=1..k+1} A175136(k+2, k-m+2)*binomial(m+n-1, m-1), for k > 0.

A319030 Triangle read by rows: T(n,k) is the number of permutations pi of [n] such that pi has k+1 valleys and s(pi) avoids the patterns 132 and 321, where s is West's stack-sorting map (0 <= k <= floor((n-1)/2)).

Original entry on oeis.org

1, 2, 4, 2, 8, 14, 16, 64, 8, 32, 240, 92, 64, 800, 624, 34, 128, 2464, 3248, 534, 256, 7168, 14336, 4736, 144, 512, 19968, 56448, 31200, 2852, 1024, 53760, 204288, 169920, 31120, 604, 2048, 140800, 692736, 808896, 247280, 14412
Offset: 1

Views

Author

Colin Defant, Sep 10 2018

Keywords

Comments

Row sums give A319028.

Examples

			Triangle begins:
    1,
    2,
    4,    2,
    8,   14,
   16,   64,    8,
   32,  240,   92,
   64,  800,  624,  34,
  128, 2464, 3248, 534,
  ...
		

Crossrefs

Programs

  • Mathematica
    DeleteCases[Flatten[CoefficientList[Series[(1 - 2 x - Sqrt[(1 - 2 x)^2 - 4 x^2 y])/(2 x*y) + x^3*y (D[(1 - 2 x - Sqrt[(1 - 2 x)^2 - 4 x^2 y])/(2 x*y), x])^2, {x, 0, 10}], {x, y}]], 0]

Formula

G.f.: G(x,y) + x^3*y*((d/dx)G(x,y))^2, where G(x,y) = (1 - 2x - sqrt((1-2x)^2 - 4x^2*y))/(2x*y) is the generating function of A091894.

A118929 a(n) = Sum_{k=0..[n/2]} 2^(n-2*k-1)*C(n-1,2*k)*C(2*k,k)/(k+1)*a(k), with a(0)=1.

Original entry on oeis.org

1, 1, 2, 5, 14, 44, 152, 569, 2270, 9524, 41576, 187432, 868144, 4117216, 19945408, 98523013, 495521686, 2534420852, 13167361256, 69417635240, 370991119792, 2008036459744, 10997771773888, 60896581502800, 340633178891872
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Comments

Invariant column vector V under matrix product A091894*V = V: a(n) = Sum_{k=0,[n/2]} A091894(n,k)*a(k), where A091894(n,k) = number of Dyck paths of semilength n, having k ddu's [here u=(1,1) and d=(1,-1)].

Crossrefs

Cf. A091894.

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n\2,2^(n-2*k-1)*binomial(n-1,2*k)*binomial(2*k,k)/(k+1)*a(k)))}

A274883 Triangle read by rows, T(n,k) = 2^k*binomial(n,k)*A057977(n-k) for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 3, 6, 12, 8, 2, 24, 24, 32, 16, 10, 20, 120, 80, 80, 32, 5, 120, 120, 480, 240, 192, 64, 35, 70, 840, 560, 1680, 672, 448, 128, 14, 560, 560, 4480, 2240, 5376, 1792, 1024, 256, 126, 252, 5040, 3360, 20160, 8064, 16128, 4608, 2304, 512
Offset: 0

Views

Author

Peter Luschny, Jul 14 2016

Keywords

Examples

			Triangle starts:
                       1;
                      1, 2;
                    1, 4, 4;
                  3, 6, 12, 8;
               2, 24, 24, 32, 16;
            10, 20, 120, 80, 80, 32;
         5, 120, 120, 480, 240, 192, 64;
     35, 70, 840, 560, 1680, 672, 448, 128;
14, 560, 560, 4480, 2240, 5376, 1792, 1024, 256;
		

Crossrefs

Cf. A000079 (T(n,n)), A057977 (T(n,0)), A077587 (row sum).
Cf. A189912. Row reversed A091894 is a subtriangle.

Programs

  • Maple
    T := (n,k) -> 2^k*binomial(n,k)*((n-k)!/floor((n-k)/2)!^2)/(floor((n-k)/2)+1);
    seq(seq(T(n,k), k=0..n), n=0..9);
Previous Showing 11-20 of 21 results. Next