A342128
Table read by antidiagonals upwards: T(n,k) is the number of n-colorings of the vertices of the k-dimensional hypercube such that no two adjacent vertices have the same color. n >= 0, k >=0.
Original entry on oeis.org
0, 1, 0, 2, 0, 0, 3, 2, 0, 0, 4, 6, 2, 0, 0, 5, 12, 18, 2, 0, 0, 6, 20, 84, 114, 2, 0, 0, 7, 30, 260, 2652, 2970, 2, 0, 0, 8, 42, 630, 29660, 1321860, 1185282, 2, 0, 0, 9, 56, 1302, 198030, 187430900, 130253748108, 100301050602, 2, 0, 0, 10, 72, 2408, 932862, 10199069190, 2157531034816940
Offset: 0
Table begins:
n\k| 0 1 2 3 4 5
---+-----------------------------------------------------------------------
0 | 0 0 0 0 0 0
1 | 1 0 0 0 0 0
2 | 2 2 2 2 2 2
3 | 3 6 18 114 2970 1185282
4 | 4 12 84 2652 1321860 130253748108
5 | 5 20 260 29660 187430900 2157531034816940
6 | 6 30 630 198030 10199069190 7905235551766437150
7 | 7 42 1302 932862 269591166222 7365707045872206479742
8 | 8 56 2408 3440024 4221404762120 2337101560809838105414712
9 | 9 72 4104 10599192 44876701584360 327425229254999498091796728
10 | 10 90 6570 28478970 355148098691850 24489214732779742874109277530
A100606
a(n) = n^4 + n^3 + n.
Original entry on oeis.org
0, 3, 26, 111, 324, 755, 1518, 2751, 4616, 7299, 11010, 15983, 22476, 30771, 41174, 54015, 69648, 88451, 110826, 137199, 168020, 203763, 244926, 292031, 345624, 406275, 474578, 551151, 636636, 731699, 837030, 953343, 1081376, 1221891, 1375674, 1543535, 1726308
Offset: 0
Douglas Winston (douglas.winston(AT)srupc.com), Nov 30 2004
-
[n^4+n^3+n: n in [0..50]]; // Vincenzo Librandi, Jun 09 2011
-
Table[n^4+n^3+n,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,3,26,111,324},40] (* Harvey P. Dale, Apr 25 2015 *)
-
a(n)=n^4+n^3+n \\ Charles R Greathouse IV, Oct 21 2022
A123658
a(n) = 1 + n^4 + n^6 + n^9 + n^10.
Original entry on oeis.org
5, 1617, 79543, 1315073, 11735001, 70591825, 322948907, 1208225793, 3874742893, 11001010001, 28297158495, 67080151297, 148467846593, 309923269713, 615105191251, 1168247947265, 2134605998037, 3768860634193, 6453801131783, 10752064160001, 17474246985385
Offset: 1
a(40) = 1+40^(A001358(1))+40^(A001358(2))+40^(A001358(3))+40^(A001358(4)) = 1+40^4+40^6+40^9+40^10 = 10747908098560001.
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
[1+n^4+n^6+n^9+n^10: n in [0..50]]; // G. C. Greubel, Oct 17 2017
-
Table[1+n^4+n^6+n^9+n^10, {n,1,50}] (* G. C. Greubel, Oct 17 2017 *)
LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{5,1617,79543,1315073,11735001,70591825,322948907,1208225793,3874742893,11001010001,28297158495},30] (* Harvey P. Dale, Jul 11 2025 *)
-
a(n)=1+n^4+n^6+n^9+n^10 \\ Charles R Greathouse IV, Oct 07 2015
A131473
a(n) = n^6 - n.
Original entry on oeis.org
0, 0, 62, 726, 4092, 15620, 46650, 117642, 262136, 531432, 999990, 1771550, 2985972, 4826796, 7529522, 11390610, 16777200, 24137552, 34012206, 47045862, 63999980, 85766100, 113379882, 148035866, 191102952, 244140600, 308915750
Offset: 0
-
[n^6-n: n in [0..30]]; // Vincenzo Librandi, Aug 11 2011
-
A131473:=n->n^6-n; seq(A131473(n), n=0..30); # Wesley Ivan Hurt, Feb 25 2014
-
f[n_]:=n^6-n;f[Range[0,60]] (* Vladimir Joseph Stephan Orlovsky, Feb 10 2011 *)
Array[#^6-#&,60,0] (* Harvey P. Dale, Aug 10 2011 *)
-
[lucas_number1(3,n^3,n) for n in range(0, 27)] # Zerinvary Lajos, May 16 2009
A277443
Square array A(n,k) (n>=1, k>=1) read by antidiagonals: A(n,k) is the number of n-colorings of the prism graph Y_k on 2k vertices.
Original entry on oeis.org
0, 0, 0, 0, 2, 0, 0, 0, 18, 0, 0, 2, 12, 84, 0, 0, 0, 114, 264, 260, 0, 0, 2, 180, 2652, 1920, 630, 0, 0, 0, 858, 16080, 29660, 8520, 1302, 0, 0, 2, 1932, 119844, 367080, 198030, 28140, 2408, 0, 0, 0, 7074, 816984, 4843460, 4067280, 932862, 76272, 4104, 0, 0, 2, 18660, 5784492, 62682480, 85847910, 28576380, 3440024, 179424, 6570, 0
Offset: 1
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, ...
0, 2, 0, 2, 0, 2, 0, ...
0, 18, 12, 114, 180, 858, 1932, ...
0, 84, 264, 2652, 16080, 119844, 816984, ...
0, 260, 1920, 29660, 367080, 4843460, 62682480, ...
0, 630, 8520, 198030, 4067280, 85847910, 1800687000, ...
Cf.
A277444 (colorings of Möbius ladders),
A182406 (square grid graphs).
Comments