cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A093142 Expansion of g.f. (1-5*x)/((1-x)*(1-10*x)).

Original entry on oeis.org

1, 6, 56, 556, 5556, 55556, 555556, 5555556, 55555556, 555555556, 5555555556, 55555555556, 555555555556, 5555555555556, 55555555555556, 555555555555556, 5555555555555556, 55555555555555556, 555555555555555556, 5555555555555555556, 55555555555555555556, 555555555555555555556
Offset: 0

Views

Author

Paul Barry, Mar 24 2004

Keywords

Comments

Second binomial transform of 5*A001045(3n)/3+(-1)^n.
Partial sums of A093143.
A convex combination of 10^n and 1.
In general the second binomial transform of k*Jacobsthal(3n)/3+(-1)^n is 1, 1+k, 1+11k, 1+111k, ... This is the case for k=5.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-5x)/((1-x)(1-10x)),{x,0,20}],x] (* or *) LinearRecurrence[{11,-10},{1,6},20] (* Harvey P. Dale, Aug 23 2014 *)
  • PARI
    {a(n) = (5*10^n+4)/9} \\ Seiichi Manyama, Sep 14 2019

Formula

a(n) = 5*10^n/9 + 4/9.
a(n) = 10*a(n-1) - 4 with a(0)=1. - Vincenzo Librandi, Aug 02 2010
a(n) = 11*a(n-1) - 10*a(n-2), n > 1. - Harvey P. Dale, Aug 23 2014
From Elmo R. Oliveira, Apr 29 2025: (Start)
E.g.f.: exp(x)*(5*exp(9*x) + 4)/9.
a(n) = (A062397(n) + A002275(n))/2. (End)

A178769 a(n) = (5*10^n + 13)/9.

Original entry on oeis.org

2, 7, 57, 557, 5557, 55557, 555557, 5555557, 55555557, 555555557, 5555555557, 55555555557, 555555555557, 5555555555557, 55555555555557, 555555555555557, 5555555555555557, 55555555555555557, 555555555555555557, 5555555555555555557, 55555555555555555557, 555555555555555555557
Offset: 0

Views

Author

Bruno Berselli, Jun 13 2010

Keywords

Crossrefs

Cf. A165246 (..17, 117, 1117,..), A173193 (..27, 227, 2227,..), A173766 (..37, 337, 3337,..), A173772 (..47, 447, 4447,..), A067275 (..67, 667, 6667,..), A002281 (..77, 777, 7777,..), A173812 (..87, 887, 8887,..), A173833 (..97, 997, 9997,..).
Cf. A093143.

Programs

  • GAP
    List([0..20], n -> (5*10^n+13)/9); # G. C. Greubel, Jan 24 2019
  • Magma
    [(5*10^n+13)/9: n in [0..20]]; // Vincenzo Librandi, Jun 06 2013
    
  • Mathematica
    CoefficientList[Series[(2 - 15 x) / ((1 - x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 06 2013 *)
    LinearRecurrence[{11,-10},{2,7},20] (* Harvey P. Dale, Feb 28 2017 *)
  • PARI
    vector(20, n, n--; (5*10^n+13)/9) \\ G. C. Greubel, Jan 24 2019
    
  • Sage
    [(5*10^n+13)/9 for n in (0..20)] # G. C. Greubel, Jan 24 2019
    

Formula

a(n)^(4*k+2) + 1 == 0 (mod 250) for n > 1, k >= 0.
G.f.: (2-15*x)/((1-x)*(1-10*x)).
a(n) - 11*a(n-1) + 10*a(n-2) = 0 (n > 1).
a(n) = a(n-1) + 5*10^(n-1) = 10*a(n-1) - 13 for n > 0.
a(n) = 1 + Sum_{i=0..n} A093143(i). - Bruno Berselli, Feb 16 2015
E.g.f.: exp(x)*(5*exp(9*x) + 13)/9. - Elmo R. Oliveira, Sep 09 2024

A136025 Sum of distinct proper prime divisors of odd integers below 10^n.

Original entry on oeis.org

3, 373, 24307, 1691682, 127867801, 10233538789, 850896280551, 72812857079241, 6363727756215813, 565232434009370012, 50843507342073211151, 4620323131256374760046, 423405369424475640435621, 39074878176445767411791424
Offset: 1

Views

Author

Enoch Haga, Dec 12 2007

Keywords

Comments

Through 10^5 about 37.5% of total sums for all integers N comprise sums of odd N and the remaining 62.5% of even N.

Examples

			a(0)=3 because the only odd N <=10^1-1 having a prime factor is 9 and its factor is 3 and sum is 3.
		

Crossrefs

Programs

  • Maple
    A105221 := proc(n) local a,ifs,p; ifs := ifactors(n)[2] ; a := 0 ; for p in ifs do if op(1,p) <> 1 and op(1,p) <> n then a := a+op(1,p) ; fi ; od: RETURN(a) ; end: A136025 := proc(n) local a,k ; a := 0 ; for k from 5 to 10^n-1 by 2 do a := a+A105221(k) ; od: RETURN(a) ; end: for n from 1 do print(A136025(n)); od: # R. J. Mathar, Jan 29 2008

Formula

a(n) = sum_{k=1,2,...,A093143(n)} A105221(2k-1). - R. J. Mathar, Jan 29 2008
a(n) = sum_{prime p, 3<=p<10^n} p*floor((10^n-p)/(2p)). - Max Alekseyev, Jan 30 2012

Extensions

a(6) from R. J. Mathar, Jan 29 2008
a(7)-a(11) from Max Alekseyev, Jan 30 2012
a(12)-a(14) from Hiroaki Yamanouchi, Jul 06 2014

A216156 Period of powers of 11 mod 10^n.

Original entry on oeis.org

10, 50, 500, 5000, 50000, 500000, 5000000, 50000000, 500000000, 5000000000, 50000000000, 500000000000, 5000000000000, 50000000000000, 500000000000000, 5000000000000000, 50000000000000000, 500000000000000000
Offset: 1

Views

Author

V. Raman, Sep 02 2012

Keywords

Comments

Essentially the same as A093143. - R. J. Mathar, Sep 06 2012
Also period of squares mod 10^n. - Mohammed Yaseen, Apr 18 2023

Examples

			a(2) = 50 because 11^50 = 11739085287969531650666649599035831993898213898723001 = 1 mod 1000.
		

Crossrefs

Programs

  • Mathematica
    Join[{10}, NestList[10*# &, 50, 20]] (* Paolo Xausa, Feb 20 2024 *)

Formula

a(n) = 5*10^(n-1), n >= 2.

A326811 Numbers in A326806 whose sum of digits is not a power of 10 and are not of the form 5*10^k or 6*10^k.

Original entry on oeis.org

0, 6667, 58824, 8823529412, 5263157894737, 19607843137255, 65217391304348, 98360655737705, 746268656716418, 4761904761904762, 8955223880597015, 58823529411764706, 1369863013698630137, 60240963855421686747, 3061224489795918367347, 34090909090909090909091
Offset: 1

Views

Author

Chai Wah Wu, Oct 19 2019

Keywords

Comments

A326806 = A326811 UNION A326833 UNION A090019 UNION A093143. Note that several terms (e.g. a(10), a(13), a(17)-a(19)) look like the rounding off of a periodic sequence, i.e. yxxxa9xxxa9xxxa9... rounded off to yxxxa9xxxa9xxxb, where b = a+1. Perhaps these can be considered near-cyclic numbers? - Chai Wah Wu, Oct 21 2019

Crossrefs

Extensions

More terms from Chai Wah Wu, Oct 21 2019

A346629 Number of n-digit positive integers that are the product of two integers ending with 2.

Original entry on oeis.org

1, 4, 45, 450, 4500, 45000, 450000, 4500000, 45000000, 450000000, 4500000000, 45000000000, 450000000000, 4500000000000, 45000000000000, 450000000000000, 4500000000000000, 45000000000000000, 450000000000000000, 4500000000000000000, 45000000000000000000, 450000000000000000000
Offset: 1

Views

Author

Stefano Spezia, Jul 25 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A139245.
After initial 1 or 2 values the same as A137233. - R. J. Mathar, Aug 23 2021

Crossrefs

Cf. A011557 (powers of 10), A017293 (positive integers ending with 2), A052268 (number of n-digit integers), A139245 (product of two integers ending with 2), A093143, A337855, A337856.
Cf. A137233.

Programs

  • Mathematica
    LinearRecurrence[{10},{1,4,45},25]

Formula

O.g.f.: x*(1 - 6*x + 5*x^2)/(1 - 10*x).
E.g.f.: (9*exp(10*x) - 9 + 110*x - 50*x^2)/200.
a(n) = 10*a(n-1) for n > 3, with a(1) = 1, a(2) = 4 and a(3) = 45.
a(n) = 45*10^(n-3) for n > 2.
a(n) = 45*A011557(n-3) for n > 2.
Sum_{i=1..n} a(n) = A093143(n-1).

A191687 Table T(n,k) = ceiling((1/2)*((k+1)^n+(1+(-1)^k)/2)) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 4, 5, 2, 1, 1, 8, 14, 8, 3, 1, 1, 16, 41, 32, 13, 3, 1, 1, 32, 122, 128, 63, 18, 4, 1, 1, 64, 365, 512, 313, 108, 25, 4, 1, 1, 128, 1094, 2048, 1563, 648, 172, 32, 5, 1
Offset: 1

Views

Author

Adi Dani, Jun 11 2011

Keywords

Comments

T(n,k) is the number of compositions of even natural numbers into n parts <= k.

Examples

			Top left corner:
  1, 1, 1,  1,  1,...
  1, 1, 2,  2,  3,...
  1, 2, 5,  8, 13,...
  1, 4,14, 32, 63,...
  1, 8,41,128,313,...
T(2,4)=13: there are 13 compositions of even natural numbers into 2 parts <=4
0: (0,0);
2: (0,2), (2,0), (1,1);
4: (0,4), (4,0), (1,3), (3,1), (2,2);
6: (2,4), (4,2), (3,3);
8: (4,4).
		

Crossrefs

Programs

  • Mathematica
    Table[Table[Ceiling[1/2*((k+1)^n+(1+(-1)^k)/2)],{n,0,9},{k,0,9}]]

A346178 Expansion of (1-2*x)/(1-10*x).

Original entry on oeis.org

1, 8, 80, 800, 8000, 80000, 800000, 8000000, 80000000, 800000000, 8000000000, 80000000000, 800000000000, 8000000000000, 80000000000000, 800000000000000, 8000000000000000, 80000000000000000, 800000000000000000, 8000000000000000000, 80000000000000000000
Offset: 0

Views

Author

Felix Fröhlich, Jul 09 2021

Keywords

Crossrefs

Cf. expansion of (1-k*x)/(1-10*x) A011557 (k=0), A196662 (k=3), A090019 (k=4), A093143 (k=5), A093141 (k=6), A093138 (k=7), A093136 (k=8).

Programs

  • PARI
    Vec((1-2*x)/(1-10*x) + O(x^20))

Formula

a(n) = 8*10^(n-1), n>0.
E.g.f.: (1 + 4*exp(10*x))/5. - Stefano Spezia, Jul 09 2021
Previous Showing 11-18 of 18 results.