A093142
Expansion of g.f. (1-5*x)/((1-x)*(1-10*x)).
Original entry on oeis.org
1, 6, 56, 556, 5556, 55556, 555556, 5555556, 55555556, 555555556, 5555555556, 55555555556, 555555555556, 5555555555556, 55555555555556, 555555555555556, 5555555555555556, 55555555555555556, 555555555555555556, 5555555555555555556, 55555555555555555556, 555555555555555555556
Offset: 0
-
CoefficientList[Series[(1-5x)/((1-x)(1-10x)),{x,0,20}],x] (* or *) LinearRecurrence[{11,-10},{1,6},20] (* Harvey P. Dale, Aug 23 2014 *)
-
{a(n) = (5*10^n+4)/9} \\ Seiichi Manyama, Sep 14 2019
A178769
a(n) = (5*10^n + 13)/9.
Original entry on oeis.org
2, 7, 57, 557, 5557, 55557, 555557, 5555557, 55555557, 555555557, 5555555557, 55555555557, 555555555557, 5555555555557, 55555555555557, 555555555555557, 5555555555555557, 55555555555555557, 555555555555555557, 5555555555555555557, 55555555555555555557, 555555555555555555557
Offset: 0
Cf.
A165246 (..17, 117, 1117,..),
A173193 (..27, 227, 2227,..),
A173766 (..37, 337, 3337,..),
A173772 (..47, 447, 4447,..),
A067275 (..67, 667, 6667,..),
A002281 (..77, 777, 7777,..),
A173812 (..87, 887, 8887,..),
A173833 (..97, 997, 9997,..).
-
List([0..20], n -> (5*10^n+13)/9); # G. C. Greubel, Jan 24 2019
-
[(5*10^n+13)/9: n in [0..20]]; // Vincenzo Librandi, Jun 06 2013
-
CoefficientList[Series[(2 - 15 x) / ((1 - x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 06 2013 *)
LinearRecurrence[{11,-10},{2,7},20] (* Harvey P. Dale, Feb 28 2017 *)
-
vector(20, n, n--; (5*10^n+13)/9) \\ G. C. Greubel, Jan 24 2019
-
[(5*10^n+13)/9 for n in (0..20)] # G. C. Greubel, Jan 24 2019
A136025
Sum of distinct proper prime divisors of odd integers below 10^n.
Original entry on oeis.org
3, 373, 24307, 1691682, 127867801, 10233538789, 850896280551, 72812857079241, 6363727756215813, 565232434009370012, 50843507342073211151, 4620323131256374760046, 423405369424475640435621, 39074878176445767411791424
Offset: 1
a(0)=3 because the only odd N <=10^1-1 having a prime factor is 9 and its factor is 3 and sum is 3.
-
A105221 := proc(n) local a,ifs,p; ifs := ifactors(n)[2] ; a := 0 ; for p in ifs do if op(1,p) <> 1 and op(1,p) <> n then a := a+op(1,p) ; fi ; od: RETURN(a) ; end: A136025 := proc(n) local a,k ; a := 0 ; for k from 5 to 10^n-1 by 2 do a := a+A105221(k) ; od: RETURN(a) ; end: for n from 1 do print(A136025(n)); od: # R. J. Mathar, Jan 29 2008
A216156
Period of powers of 11 mod 10^n.
Original entry on oeis.org
10, 50, 500, 5000, 50000, 500000, 5000000, 50000000, 500000000, 5000000000, 50000000000, 500000000000, 5000000000000, 50000000000000, 500000000000000, 5000000000000000, 50000000000000000, 500000000000000000
Offset: 1
a(2) = 50 because 11^50 = 11739085287969531650666649599035831993898213898723001 = 1 mod 1000.
-
Join[{10}, NestList[10*# &, 50, 20]] (* Paolo Xausa, Feb 20 2024 *)
A326811
Numbers in A326806 whose sum of digits is not a power of 10 and are not of the form 5*10^k or 6*10^k.
Original entry on oeis.org
0, 6667, 58824, 8823529412, 5263157894737, 19607843137255, 65217391304348, 98360655737705, 746268656716418, 4761904761904762, 8955223880597015, 58823529411764706, 1369863013698630137, 60240963855421686747, 3061224489795918367347, 34090909090909090909091
Offset: 1
A346629
Number of n-digit positive integers that are the product of two integers ending with 2.
Original entry on oeis.org
1, 4, 45, 450, 4500, 45000, 450000, 4500000, 45000000, 450000000, 4500000000, 45000000000, 450000000000, 4500000000000, 45000000000000, 450000000000000, 4500000000000000, 45000000000000000, 450000000000000000, 4500000000000000000, 45000000000000000000, 450000000000000000000
Offset: 1
-
LinearRecurrence[{10},{1,4,45},25]
A191687
Table T(n,k) = ceiling((1/2)*((k+1)^n+(1+(-1)^k)/2)) read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 1, 4, 5, 2, 1, 1, 8, 14, 8, 3, 1, 1, 16, 41, 32, 13, 3, 1, 1, 32, 122, 128, 63, 18, 4, 1, 1, 64, 365, 512, 313, 108, 25, 4, 1, 1, 128, 1094, 2048, 1563, 648, 172, 32, 5, 1
Offset: 1
Top left corner:
1, 1, 1, 1, 1,...
1, 1, 2, 2, 3,...
1, 2, 5, 8, 13,...
1, 4,14, 32, 63,...
1, 8,41,128,313,...
T(2,4)=13: there are 13 compositions of even natural numbers into 2 parts <=4
0: (0,0);
2: (0,2), (2,0), (1,1);
4: (0,4), (4,0), (1,3), (3,1), (2,2);
6: (2,4), (4,2), (3,3);
8: (4,4).
-
Table[Table[Ceiling[1/2*((k+1)^n+(1+(-1)^k)/2)],{n,0,9},{k,0,9}]]
A346178
Expansion of (1-2*x)/(1-10*x).
Original entry on oeis.org
1, 8, 80, 800, 8000, 80000, 800000, 8000000, 80000000, 800000000, 8000000000, 80000000000, 800000000000, 8000000000000, 80000000000000, 800000000000000, 8000000000000000, 80000000000000000, 800000000000000000, 8000000000000000000, 80000000000000000000
Offset: 0
Comments