A352472
Triangle T(n,k) read by rows: the number of traceless symmetric binary n X n matrices with 2k one's and no all-1 2 X 2 submatrix.
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 1, 1, 6, 15, 20, 12, 1, 10, 45, 120, 195, 162, 15, 1, 15, 105, 455, 1320, 2508, 2680, 900, 1, 21, 210, 1330, 5880, 18564, 40474, 54750, 35595, 6615, 1, 28, 378, 3276, 20265, 93240, 320040, 795120, 1333080, 1323840, 619920, 90720, 1, 36, 630, 7140, 58527, 364896
Offset: 1
The triangle starts at 1 X 1 matrices and 0,2,4,... ones as
1: 1;
2: 1 1;
3: 1 3 3 1;
4: 1 6 15 20 12;
5: 1 10 45 120 195 162 15;
6: 1 15 105 455 1320 2508 2680 900;
7: 1 21 210 1330 5880 18564 40474 54750 35595 6615;
8: 1 28 378 3276 20265 93240 320040 795120 1333080 1323840 619920 90720;
9: 1 36 630 7140 58527 364896 1763076 6578640 18514935 37535932 50808870 40684140 15892065 1995840;
A337959
Number of chiral pairs of colorings of the 30 triangular faces of a regular icosahedron or the 30 vertices of a regular dodecahedron using n or fewer colors.
Original entry on oeis.org
0, 8388, 28998090, 9160633008, 794699283870, 30467722237092, 664933856235516, 9607670743188672, 101313843935748516, 833333209516666980, 5606249568529546134, 31947998829845093424, 158374695227965468434
Offset: 1
- Index entries for linear recurrences with constant coefficients, signature (21, -210, 1330, -5985, 20349, -54264, 116280, -203490, 293930, -352716, 352716, -293930, 203490, -116280, 54264, -20349, 5985, -1330, 210, -21, 1).
Other elements:
A337964 (edges),
A337961 (dodecahedron faces, icosahedron vertices).
Other polyhedra:
A000332 (tetrahedron),
A093566(n+1) (cube faces, octahedron vertices),
A337896 (octahedron faces, cube vertices).
A144163
Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) = number of simple graphs on n labeled nodes with k edges where each maximally connected subgraph is either a tree or a cycle.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 3, 3, 1, 1, 6, 15, 20, 3, 1, 10, 45, 120, 150, 12, 1, 15, 105, 455, 1185, 1473, 70, 1, 21, 210, 1330, 5565, 14469, 18424, 465, 1, 28, 378, 3276, 19635, 81060, 213990, 280200, 3507, 1, 36, 630, 7140, 57393, 334656, 1385076, 3732300, 5029218, 30016
Offset: 0
T(4,3) = 20, because there are 20 simple graphs on 4 labeled nodes with 3 edges, where each maximally connected subgraph is either a tree or a cycle, 16 of these graphs consist of a single tree with 4 nodes and 4 consist of a cycle with 3 and a tree with 1 node:
.1-2. .1-2. .1.2. .1.2. .1-2. .1-2. .1-2. .1-2. .1-2. .1.2.
.|\.. ../|. ..\|. .|/.. .|... ...|. ../.. ..\.. .|.|. .|.|.
.4.3. .4.3. .4-3. .4-3. .4-3. .4-3. .4-3. .4-3. .4.3. .4-3.
.
.1.2. .1.2. .1-2. .1.2. .1.2. .1.2. .1.2. .1.2. .1-2. .1-2.
.|/|. .|\|. ..X.. ..X|. ..X.. .|X.. ../|. .|\.. .|/.. ..\|.
.4.3. .4.3. .4.3. .4.3. .4-3. .4.3. .4-3. .4-3. .4.3. .4.3.
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 3, 3, 1;
1, 6, 15, 20, 3;
1, 10, 45, 120, 150, 12;
-
f:= proc(n,k) option remember; local j; if k=0 then 1 elif k<0 or n<=k then 0 elif k=n-1 then n^(n-2) else add(binomial(n-1,j) *f(j+1,j) *f(n-1-j,k-j), j=0..k) fi end:
c:= proc(n,k) option remember; local i,j; if k=0 then 1 elif k<0 or n
-
f[n_, k_] := f[n, k] = Which[k == 0, 1, k<0 || n <= k, 0, k == n-1, n^(n-2), True, Sum[Binomial[n-1, j]*f[j+1, j]*f[n-1-j, k-j], {j, 0, k}]]; c[n_, k_] := c[n, k] = Which[k == 0, 1 , k<0 || nJean-François Alcover, Jan 21 2014, translated from Alois P. Heinz's Maple code *)
A093567
Binomial (Binomial (n,2), 3) - Binomial (Binomial (n,3), 2).
Original entry on oeis.org
0, 1, 14, 75, 265, 735, 1736, 3654, 7050, 12705, 21670, 35321, 55419, 84175, 124320, 179180, 252756, 349809, 475950, 637735, 842765, 1099791, 1418824, 1811250, 2289950, 2869425, 3565926, 4397589, 5384575, 6549215, 7916160, 9512536
Offset: 2
- Solomon W. Golomb, Iterated binomial coefficients, Amer. Math. Monthly, 87 (1980), 719-727.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
A093567:=n->binomial(binomial(n, 2), 3) - binomial(binomial(n, 3), 2); seq(A093567(n), n=2..30); # Wesley Ivan Hurt, Feb 02 2014
-
Table[ Binomial[ Binomial[n, 2], 3] - Binomial[ Binomial[n, 3], 2], {n, 2, 34}]
LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,1,14,75,265,735,1736},40] (* Harvey P. Dale, Jun 12 2016 *)
-
a(n) = binomial(binomial(n,2), 3) - binomial(binomial(n,3), 2); \\ Michel Marcus, Oct 01 2017
A175991
a(n) = binomial(binomial(binomial(n, 2), 3), 4)/5.
Original entry on oeis.org
969, 1642914, 352470391, 25957590316, 958073067315, 21639468423573, 337726148030733, 3946787095970862, 36534727415378192, 279109860906071195, 1815047255456722287, 10290566991057546557, 51837653320551263438, 235568544405588437778, 977816056476957297015, 3745739023587032569461, 13356862465688668653111
Offset: 4
-
Table[Binomial[Binomial[Binomial[n, 2], 3], 4]/5, {n, 4, 30}]
Original entry on oeis.org
165, 45760, 4545100, 280859635, 13177343466, 519435748656, 18247149400480, 592679189880470, 18233421432967455, 539997542625453900, 15568435368162197664, 440371777466788015089, 12288775148056292092340, 339634237637121659008140
Offset: 4
-
Table[Binomial[Eulerian[n + 1, 2], 3], {n, 3, 30}]
Comments