cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 58 results. Next

A218740 a(n) = (37^n - 1)/36.

Original entry on oeis.org

0, 1, 38, 1407, 52060, 1926221, 71270178, 2636996587, 97568873720, 3610048327641, 133571788122718, 4942156160540567, 182859777940000980, 6765811783780036261, 250335035999861341658, 9262396331994869641347, 342708664283810176729840, 12680220578500976539004081
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 37 (A009981).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1 - x)*(1 - 37*x)).
a(n) = 38*a(n-1) - 37*a(n-2).
a(n) = floor(37^n/36). (End)
E.g.f.: exp(x)*(exp(36*x) - 1)/36. - Stefano Spezia, Mar 28 2023

A218744 a(n) = (41^n - 1)/40.

Original entry on oeis.org

0, 1, 42, 1723, 70644, 2896405, 118752606, 4868856847, 199623130728, 8184548359849, 335566482753810, 13758225792906211, 564087257509154652, 23127577557875340733, 948230679872888970054, 38877457874788447772215, 1593975772866326358660816, 65353006687519380705093457
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 41 (A009985).

Crossrefs

Programs

Formula

a(n) = floor(41^n/40).
G.f.: x/((1-x)*(1-41*x)). - Vincenzo Librandi, Nov 07 2012
a(n) = 42*a(n-1) - 41*a(n-2). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(21*x)*sinh(20*x)/20. - Elmo R. Oliveira, Aug 27 2024

A218746 a(n) = (43^n - 1)/42.

Original entry on oeis.org

0, 1, 44, 1893, 81400, 3500201, 150508644, 6471871693, 278290482800, 11966490760401, 514559102697244, 22126041415981493, 951419780887204200, 40911050578149780601, 1759175174860440565844, 75644532518998944331293, 3252714898316954606245600, 139866740627629048068560801
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 43 (A009987).
0 followed by the binomial transform of A170762. - R. J. Mathar, Jul 18 2015

Crossrefs

Programs

Formula

G.f.: x/((1-x)*(1-43*x)). - Vincenzo Librandi, Nov 07 2012
a(n) = 44*a(n-1) - 43*a(n-2). - Vincenzo Librandi, Nov 07 2012
a(n) = floor(43^n/42). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(22*x)*sinh(21*x)/21. - Elmo R. Oliveira, Aug 27 2024

A351471 Numbers m such that the largest digit in the decimal expansion of 1/m is 5.

Original entry on oeis.org

2, 4, 8, 18, 20, 22, 32, 40, 66, 74, 80, 180, 185, 198, 200, 220, 222, 320, 396, 400, 444, 492, 660, 666, 702, 704, 738, 740, 800, 803, 876, 1800, 1818, 1845, 1848, 1850, 1875, 1912, 1980, 1998, 2000, 2200, 2220, 2222, 2409, 2424, 2466, 2849, 3075, 3200, 3212, 3276, 3960, 3996, 4000
Offset: 1

Views

Author

Keywords

Comments

If k is a term, 10*k is also a term.
First few primitive terms are 2, 4, 8, 18, 22, 32, 66, 74, 185, 198, 222, 396, ...
2 and 4649 are the only primes up to 2.6*10^8 (see comments in A333237).
Some subsequences:
{2, 22, 222, 2222, ...} = A002276 \ {0}.
{66, 666, 6666, ...} = A002280 \ {0, 6}.
{18, 1818, 181818, ...} = 18 * A094028.

Examples

			As 1/8 = 0.125, 8 is a term.
As 1/4649 = 0.000215121512151..., 4649 is a term.
		

Crossrefs

Subsequences: A002276, A002280.
Similar with largest digit k: A333402 (k=1), A341383 (k=2), A350814 (k=3), A351470 (k=4), this sequence (k=5), A351472 (k=6), A351473 (k=7), A351474 (k=8), A333237 (k=9).
Cf. A333236.

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[Range@1500000, Max@ f@# == 5 &]
  • Python
    from itertools import count, islice
    from sympy import n_order, multiplicity
    def A351471_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue, 1)):
            m2, m5 = multiplicity(2, m), multiplicity(5, m)
            if max(str(10**(max(m2, m5)+n_order(10, m//2**m2//5**m5))//m)) == '5':
                yield m
    A351471_list = list(islice(A351471_gen(), 10)) # Chai Wah Wu, Feb 15 2022

A351472 Numbers m such that the largest digit in the decimal expansion of 1/m is 6.

Original entry on oeis.org

6, 15, 16, 24, 39, 60, 64, 88, 96, 150, 156, 160, 165, 219, 240, 246, 273, 275, 375, 378, 384, 390, 399, 462, 600, 606, 615, 624, 625, 640, 792, 822, 858, 880, 888, 956, 960, 975, 984, 1500, 1515, 1536, 1554, 1560, 1584, 1596, 1600, 1606, 1626, 1628, 1638, 1650, 1665, 1776, 2145
Offset: 1

Views

Author

Keywords

Comments

If k is a term, 10*k is also a term.
First few primitive terms are 6, 15, 16, 24, 39, 64, 88, 96, 156, 165, ...
There is no prime up to 2.6*10^8 (see comments in A333237).
Subsequence: {6, 606, 60606, ...} = 6 * A094028.

Examples

			1/6 = 0.166666..., and 6 is the smallest number m such that the largest digit in the decimal expansion of 1/m is 6, so a(1) = 6.
As 1/39 = 0.025641025641..., 39 is a term.
		

Crossrefs

Similar with largest digit k: A333402 (k=1), A341383 (k=2), A350814 (k=3), A351470 (k=4), A351471 (k=5), this sequence (k=6), A351473 (k=7), A351474 (k=8), A333237 (k=9).

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[Range@1500000, Max@ f@# == 6 &]
  • Python
    from itertools import count, islice
    from sympy import n_order, multiplicity
    def A351472_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue, 1)):
            m2, m5 = multiplicity(2, m), multiplicity(5, m)
            if max(str(10**(max(m2, m5)+n_order(10, m//2**m2//5**m5))//m)) == '6':
                yield m
    A351472_list = list(islice(A351472_gen(), 20)) # Chai Wah Wu, Feb 17 2022

A163662 A020988 written in base 2.

Original entry on oeis.org

10, 1010, 101010, 10101010, 1010101010, 101010101010, 10101010101010, 1010101010101010, 101010101010101010, 10101010101010101010, 1010101010101010101010, 101010101010101010101010, 10101010101010101010101010, 1010101010101010101010101010, 101010101010101010101010101010
Offset: 1

Views

Author

Jaroslav Krizek, Aug 02 2009

Keywords

Comments

The digits are n concatenated blocks of (10).
Smallest number having alternating bit sum -n. Cf. A065359. - Washington Bomfim, Jan 22 2011

Crossrefs

Programs

  • Maple
    A163662 := proc(n) add(10^(2*k-1),k=1..n) ; end: seq(A163662(n),n=1..30) ; # R. J. Mathar, Jul 08 2009
  • Mathematica
    Table[(10/99)*(10^(2*n) - 1), {n,1,50}] (* G. C. Greubel, Aug 01 2017 *)
    Table[FromDigits[PadRight[{},2n,{1,0}]],{n,20}] (* or *) LinearRecurrence[ {101,-100},{10,1010},20] (* Harvey P. Dale, Jan 08 2020 *)
  • PARI
    x='x+O('x^50); Vec(10*x/((100*x-1)*(x-1))) \\ G. C. Greubel, Aug 01 2017

Formula

a(n) = Sum_{k=1..n} 10^(2*k-1).
From R. J. Mathar, Jul 08 2009: (Start)
a(n) = 100*a(n-1) + 10.
a(n) = 101*a(n-1) - 100*a(n-2).
G.f.: 10*x/((100*x-1)*(x-1)). (End)
From G. C. Greubel, Aug 01 2017: (Start)
a(n) = (10/99)*(10^(2*n) - 1).
E.g.f.: (10/99)*(exp(100*x) - exp(x)). (End)
a(n) = 10*A094028(n-1). - Elmo R. Oliveira, Jul 23 2025

A218728 a(n) = (25^n - 1)/24.

Original entry on oeis.org

0, 1, 26, 651, 16276, 406901, 10172526, 254313151, 6357828776, 158945719401, 3973642985026, 99341074625651, 2483526865641276, 62088171641031901, 1552204291025797526, 38805107275644938151, 970127681891123453776, 24253192047278086344401, 606329801181952158610026
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 25 (A009969); q-integers for q=25.
Partial sums are in A014914. Also, the sequence is related to A014943 by A014943(n) = n*a(n) - Sum_{i=0..n-1} a(i) for n > 0. - Bruno Berselli, Nov 07 2012

Crossrefs

Programs

Formula

a(n) = floor(25^n/24).
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-25*x)).
a(n) = 26*a(n-1) - 25*a(n-2). (End)
E.g.f.: exp(13*x)*sinh(12*x)/12. - Elmo R. Oliveira, Aug 27 2024
a(n) = 25*a(n-1) + 1. - Jerzy R Borysowicz, Sep 05 2025

A218743 a(n) = (40^n - 1)/39.

Original entry on oeis.org

0, 1, 41, 1641, 65641, 2625641, 105025641, 4201025641, 168041025641, 6721641025641, 268865641025641, 10754625641025641, 430185025641025641, 17207401025641025641, 688296041025641025641, 27531841641025641025641, 1101273665641025641025641, 44050946625641025641025641
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 40 (A009983).

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 41*Self(n-1) - 40*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
  • Mathematica
    LinearRecurrence[{41, -40}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
  • Maxima
    A218743(n):=floor(40^n/39)$ makelist(A218743(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=40^n\39
    

Formula

a(n) = floor(40^n/39).
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-40*x)).
a(n) = 41*a(n-1) - 40*a(n-2). (End)
E.g.f.: exp(x)*(exp(39*x) - 1)/39. - Elmo R. Oliveira, Aug 29 2024

A269025 a(n) = Sum_{k = 0..n} 60^k.

Original entry on oeis.org

1, 61, 3661, 219661, 13179661, 790779661, 47446779661, 2846806779661, 170808406779661, 10248504406779661, 614910264406779661, 36894615864406779661, 2213676951864406779661, 132820617111864406779661, 7969237026711864406779661, 478154221602711864406779661
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 18 2016

Keywords

Comments

Partial sums of powers of 60 (A159991).
Converges in a 10-adic sense to ...762711864406779661.
More generally, the ordinary generating function for the Sum_{k = 0..n} m^k is 1/((1 - m*x)*(1 - x)). Also, Sum_{k = 0..n} m^k = (m^(n + 1) - 1)/(m - 1).

Crossrefs

Cf. A159991.
Cf. similar sequences of the form (k^n-1)/(k-1): A000225 (k=2), A003462 (k=3), A002450 (k=4), A003463 (k=5), A003464 (k=6), A023000 (k=7), A023001 (k=8), A002452 (k=9), A002275 (k=10), A016123 (k=11), A016125 (k=12), A091030 (k=13), A135519 (k=14), A135518 (k=15), A131865 (k=16), A091045 (k=17), A218721 (k=18), A218722 (k=19), A064108 (k=20), A218724-A218734 (k=21..31), A132469 (k=32), A218736-A218753 (k=33..50), this sequence (k=60), A133853 (k=64), A094028 (k=100), A218723 (k=256), A261544 (k=1000).

Programs

  • Mathematica
    Table[Sum[60^k, {k, 0, n}], {n, 0, 15}]
    Table[(60^(n + 1) - 1)/59, {n, 0, 15}]
    LinearRecurrence[{61, -60}, {1, 61}, 15]
  • PARI
    a(n)=60^n + 60^n\59 \\ Charles R Greathouse IV, Jul 26 2016

Formula

G.f.: 1/((1 - 60*x)*(1 - x)).
a(n) = (60^(n + 1) - 1)/59 = 60^n + floor(60^n/59).
a(n+1) = 60*a(n) + 1, a(0)=1.
a(n) = Sum_{k = 0..n} A159991(k).
Sum_{n>=0} 1/a(n) = 1.016671221665660580331...
E.g.f.: exp(x)*(60*exp(59*x) - 1)/59. - Stefano Spezia, Mar 23 2023

A218725 a(n) = (22^n - 1)/21.

Original entry on oeis.org

0, 1, 23, 507, 11155, 245411, 5399043, 118778947, 2613136835, 57489010371, 1264758228163, 27824681019587, 612142982430915, 13467145613480131, 296277203496562883, 6518098476924383427, 143398166492336435395, 3154759662831401578691, 69404712582290834731203
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 22; q-integers for q=22: Diagonal k=1 in the triangle A022186.
Partial sums are in A014907. Also, the sequence is related to A014940 by A014940(n) = n*a(n) - Sum_{i=0..n-1} a(i) for n > 0. [Bruno Berselli, Nov 06 2012]

Crossrefs

Programs

Formula

a(n) = floor(22^n/21).
G.f.: x/((1-x)*(1-22*x)). [Bruno Berselli, Nov 06 2012]
a(n) = 23*a(n-1) - 22*a(n-2). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(x)*(exp(21*x) - 1)/21. - Elmo R. Oliveira, Aug 29 2024
Previous Showing 21-30 of 58 results. Next