cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A153783 3 times 11-gonal (or hendecagonal) numbers: a(n) = 3*n*(9*n-7)/2.

Original entry on oeis.org

0, 3, 33, 90, 174, 285, 423, 588, 780, 999, 1245, 1518, 1818, 2145, 2499, 2880, 3288, 3723, 4185, 4674, 5190, 5733, 6303, 6900, 7524, 8175, 8853, 9558, 10290, 11049, 11835, 12648, 13488, 14355, 15249, 16170, 17118, 18093, 19095
Offset: 0

Views

Author

Omar E. Pol, Jan 02 2009

Keywords

Crossrefs

Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=27: see Comments lines of A226492.

Programs

Formula

a(n) = (27*n^2 - 21*n)/2 = A051682(n)*3.
a(n) = 27*n + a(n-1) - 24, with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: 3*x*(1 + 8*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
From G. C. Greubel, Aug 28 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (3/2)*x*(2 + 9*x)*exp(x). (End)

A153875 3 times 13-gonal (or tridecagonal) numbers: a(n) = 3*n*(11*n - 9)/2.

Original entry on oeis.org

0, 3, 39, 108, 210, 345, 513, 714, 948, 1215, 1515, 1848, 2214, 2613, 3045, 3510, 4008, 4539, 5103, 5700, 6330, 6993, 7689, 8418, 9180, 9975, 10803, 11664, 12558, 13485, 14445, 15438, 16464, 17523, 18615, 19740, 20898, 22089
Offset: 0

Views

Author

Omar E. Pol, Jan 03 2009

Keywords

Crossrefs

Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=33: see Comments lines of A226492.

Programs

Formula

a(n) = (33*n^2 - 27*n)/2 = A051865(n)*3.
a(n) = a(n-1) + 33*n - 30, with n>0, a(0)=0. - Vincenzo Librandi, Dec 14 2010
G.f.: 3*x*(1 + 10*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
From G. C. Greubel, Aug 31 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (3/2)*x*(2 + 11*x)*exp(x). (End)

A048790 Array read by antidiagonals: T(n,k) = number of rooted n-dimensional polycubes with k cells, with no symmetries removed (n >= 1, k >= 1).

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 6, 18, 4, 1, 8, 45, 76, 5, 1, 10, 84, 344, 315, 6, 1, 12, 135, 936, 2670, 1296, 7, 1, 14, 198, 1980, 10810, 20886, 5320, 8, 1, 16, 273, 3604, 30475, 127632, 164514, 21800, 9, 1, 18, 360, 5936, 69405, 483702, 1531180, 1303304, 89190, 10, 1
Offset: 1

Views

Author

Keywords

Examples

			Array begins:
n\k 1..2...3.....4......5.......6........7........8........9.....10......11......12.......13
1 | 1..2...3.....4......5.......6........7........8........9.....10......11......12.......13
2 | 1..4..18....76....315....1296.....5320....21800....89190.364460.1487948.6070332.24750570
3 | 1..6..45...344...2670...20886...164514..1303304.10375830
4 | 1..8..84...936..10810..127632..1531180.18589840
5 | 1.10.135..1980..30475..483702..7847525
6 | 1.12.198..3604..69405.1386048.28403620
7 | 1.14.273..5936.137340.3307878
8 | 1.16.360..9104.246020
9 | 1.18.459.13236.409185
		

References

  • Dan Hoey, Bill Gosper and Richard C. Schroeppel, Discussions in Math-Fun Mailing list, circa Jul 13 1999.

Crossrefs

Rows give A048663-A048668, A094101. Columns give A094159-A094161. Cf. A094100.

Extensions

More terms from Joshua Zucker, Aug 14 2006
Edited by N. J. A. Sloane, Sep 15 2008 at the suggestion of R. J. Mathar

A195319 Three times second hexagonal numbers: 3*n*(2*n+1).

Original entry on oeis.org

0, 9, 30, 63, 108, 165, 234, 315, 408, 513, 630, 759, 900, 1053, 1218, 1395, 1584, 1785, 1998, 2223, 2460, 2709, 2970, 3243, 3528, 3825, 4134, 4455, 4788, 5133, 5490, 5859, 6240, 6633, 7038, 7455, 7884, 8325, 8778, 9243, 9720, 10209, 10710, 11223
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 9, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Semi-axis opposite to A094159 in the same spiral.
Sum of the numbers from 2*n to 4*n. - Wesley Ivan Hurt, Nov 27 2015
From Peter M. Chema, Jan 21 2017: (Start)
Also 0 together with the partial sums of A017629.
Digit root is 0 together with period 3: repeat [9,3,9].
Final digits cycle a length period 10: repeat [0,9,0,3,8,5,4,5,8,3]. (End)
Sequence found by reading the line from 0, in the direction 0, 9, ..., in the triangle spiral. - Hans G. Oberlack, Dec 08 2018

Crossrefs

Bisection of A045943.

Programs

Formula

a(n) = 6*n^2 + 3*n = 3*A014105(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Harvey P. Dale, Oct 13 2013
G.f.: 3*x*(3+x) / (1-x)^3. - Wesley Ivan Hurt, Nov 27 2015
a(n) = A000217(3*n) + 3*A000217(n). - Bruno Berselli, Aug 31 2017
E.g.f.: 3*x*(2*x+3)*exp(x). - G. C. Greubel, Dec 07 2018
From Amiram Eldar, Feb 27 2022: (Start)
Sum_{n>=1} 1/a(n) = 2*(1 - log(2))/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/2 + log(2) - 2)/3. (End)

A225144 a(n) = Sum_{i=n..2*n} i^2*(-1)^i.

Original entry on oeis.org

0, 3, 11, 18, 42, 45, 93, 84, 164, 135, 255, 198, 366, 273, 497, 360, 648, 459, 819, 570, 1010, 693, 1221, 828, 1452, 975, 1703, 1134, 1974, 1305, 2265, 1488, 2576, 1683, 2907, 1890, 3258, 2109, 3629, 2340, 4020, 2583, 4431, 2838, 4862, 3105, 5313, 3384
Offset: 0

Views

Author

Bruno Berselli, Jun 06 2013

Keywords

Comments

3 and 11 are the only primes in the sequence.

Examples

			a(6) = 6^2-7^2+8^2-9^2+10^2-11^2+12^2 = 93.
a(7) = -7^2+8^2-9^2+10^2-11^2+12^2-13^2+14^2 = 84.
		

Crossrefs

Cf. A050409: sum(i^2, i=n..2n); A064455: sum(i*(-1)^i, i=n..2n); A065679: A000217(n)+(-1)^n*A000217(n-1); A089594: sum(i^2*(-1)^i, i=1..n).

Programs

  • Magma
    [&+[i^2*(-1)^i: i in [n..2*n]]: n in [0..50]];
  • Mathematica
    Table[Sum[i^2 (-1)^i, {i, n, 2 n}], {n, 0, 50}]

Formula

G.f.: x*(3+11*x+9*x^2+9*x^3)/(1-x^2)^3.
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6).
a(n) = n*(4*n+(n-1)*(-1)^n+2)/2.
a(n) = A000217(2n) +(-1)^n*A000217(n-1) with A000217(-1)=0.
a(2n-1) = A094159(n) for n>0; a(2n) = A055437(n) for A055437(0)=0.

A152994 Nine times hexagonal numbers: a(n) = 9*n*(2*n-1).

Original entry on oeis.org

0, 9, 54, 135, 252, 405, 594, 819, 1080, 1377, 1710, 2079, 2484, 2925, 3402, 3915, 4464, 5049, 5670, 6327, 7020, 7749, 8514, 9315, 10152, 11025, 11934, 12879, 13860, 14877, 15930, 17019, 18144, 19305, 20502, 21735, 23004, 24309, 25650, 27027, 28440, 29889, 31374
Offset: 0

Views

Author

Omar E. Pol, Dec 22 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 9,..., in the square spiral whose vertices are the generalized 11-gonal numbers A195160. - Omar E. Pol, Sep 18 2011

Crossrefs

Similar sequences are listed in A316466.

Programs

Formula

a(n) = 18*n^2 - 9*n = A000384(n)*9 = A094159(n)*3.
a(n) = a(n-1) + 36*n - 27 for n>0, a(0)=0. - Vincenzo Librandi, Dec 15 2010
a(n) = Sum_{i = 2..10} P(i,n), where P(i,m) = m*((i-2)*m-(i-4))/2. - Bruno Berselli, Jul 04 2018
From G. C. Greubel, Sep 01 2019: (Start)
G.f.: 9*x*(1+3*x)/(1-x)^3.
E.g.f.: 9*x*(1+2*x)*exp(x). (End)
From Amiram Eldar, Feb 27 2022: (Start)
Sum_{n>=1} 1/a(n) = 2*log(2)/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi - 2*log(2))/18. (End)

A143698 12 times hexagonal numbers: 12*n*(2*n-1).

Original entry on oeis.org

0, 12, 72, 180, 336, 540, 792, 1092, 1440, 1836, 2280, 2772, 3312, 3900, 4536, 5220, 5952, 6732, 7560, 8436, 9360, 10332, 11352, 12420, 13536, 14700, 15912, 17172, 18480, 19836, 21240, 22692, 24192, 25740, 27336, 28980, 30672, 32412
Offset: 0

Views

Author

Omar E. Pol, Jan 23 2009

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 12,..., in the square spiral whose vertices are the generalized tetradecagonal numbers A195818. - Omar E. Pol, Oct 02 2011

Crossrefs

Programs

Formula

a(n) = 24*n^2 - 12*n = 12*A000384(n) = 6*A002939(n) = 4*A094159(n) = 3*A085250(n) = 2*A152746(n).
a(n) = a(n-1) + 48*n - 36, with a(0)=0. - Vincenzo Librandi, Dec 14 2010
From G. C. Greubel, May 30 2021: (Start)
G.f.: 12*x*(1 + 3*x)/(1-x)^3.
E.g.f.: 12*x*(1 + 2*x)*exp(x). (End)

A154617 Eleven times hexagonal numbers: a(n) = 11*n*(2*n-1).

Original entry on oeis.org

0, 11, 66, 165, 308, 495, 726, 1001, 1320, 1683, 2090, 2541, 3036, 3575, 4158, 4785, 5456, 6171, 6930, 7733, 8580, 9471, 10406, 11385, 12408, 13475, 14586, 15741, 16940, 18183, 19470, 20801, 22176, 23595, 25058, 26565, 28116, 29711, 31350, 33033, 34760, 36531, 38346
Offset: 0

Views

Author

Omar E. Pol, Jan 13 2009

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 11, ..., in the square spiral whose vertices are the generalized tridecagonal numbers A195313. - Omar E. Pol, Sep 18 2011

Crossrefs

Programs

Formula

a(n) = 22*n^2 - 11*n = 11*A000384(n).
a(n) = a(n-1) + 44*n - 33 (with a(0)=0). - Vincenzo Librandi, Dec 15 2010
From Elmo R. Oliveira, Dec 15 2024: (Start)
G.f.: 11*x*(1 + 3*x)/(1 - x)^3.
E.g.f.: 11*x*(1 + 2*x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

A221912 Partial sums of floor(n/12).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2013

Keywords

Comments

Apart from the initial zeros, the same as A008730.

Examples

			..0....0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
...
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Floor[Range[0,70]/12]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,0,0,1,2},70] (* Harvey P. Dale, Mar 23 2015 *)

Formula

a(12n) = A051866(n).
a(12n+1) = A139267(n).
a(12n+2) = A094159(n).
a(12n+3) = A033579(n).
a(12n+4) = A049452(n).
a(12n+5) = A033581(n).
a(12n+6) = A049453(n).
a(12n+7) = A033580(n).
a(12n+8) = A195319(n).
a(12n+9) = A202804(n).
a(12n+10) = A211014(n).
a(12n+11) = A049598(n).
G.f.: x^12/((1-x)^2*(1-x^12)).
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=0, a(7)=0, a(8)=0, a(9)=0, a(10)=0, a(11)=0, a(12)=1, a(13)=2, a(n)=2*a(n-1)- a(n-2)+ a(n-12)- 2*a(n-13)+ a(n-14). - Harvey P. Dale, Mar 23 2015

A227719 Floor(1/s(n)), where s(n) = n*log(1+1/n) - (2n-1)/(2n).

Original entry on oeis.org

5, 16, 33, 56, 86, 121, 162, 209, 263, 322, 387, 458, 536, 619, 708, 803, 905, 1012, 1125, 1244, 1370, 1501, 1638, 1781, 1931, 2086, 2247, 2414, 2588, 2767, 2952, 3143, 3341, 3544, 3753, 3968, 4190, 4417, 4650, 4889, 5135, 5386, 5643, 5906, 6176, 6451, 6732
Offset: 1

Views

Author

Clark Kimberling, Jul 22 2013

Keywords

Comments

That s(n) > 0 for n >=1 follows from the chain 1 < log 2 < 3/4 < 2 log 3/2 < 5/6 < 3 log 4/3 < 7/8 < 4 log 5/4 < ... ; i.e., n*log((n+1)/n) - (2n-1)/(2n) > 0 and (2n+1)/(2n+2) - n* log((n+1)/n) > 0. For the first, closeness to 0 is indicated by A227719 and A227720, and for the second, by A227721 and a sequence which possibly equals A094159. Conjecture: the four sequences are linearly recurrent.

Crossrefs

Programs

  • Mathematica
    s[n_] := n*Log[1 + 1/n] - (2 n - 1)/(2 n);
    Table[Floor[1/s[n]], {n, 1, 100}]  (* A227719 *)
    Table[Round[1/s[n]], {n, 1, 100}]  (* A227720 *)

Formula

a(n) = -2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) (conjectured).
G.f.: (-5 - 6 x - 6 x^2 - 6 x^3 - 2 x^4 + x^5)/((-1 + x)^3 (1 + x + x^2 + x^3)) (conjectured).
Previous Showing 11-20 of 25 results. Next