cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A064455 a(2n) = 3n, a(2n-1) = n.

Original entry on oeis.org

1, 3, 2, 6, 3, 9, 4, 12, 5, 15, 6, 18, 7, 21, 8, 24, 9, 27, 10, 30, 11, 33, 12, 36, 13, 39, 14, 42, 15, 45, 16, 48, 17, 51, 18, 54, 19, 57, 20, 60, 21, 63, 22, 66, 23, 69, 24, 72, 25, 75, 26, 78, 27, 81, 28, 84, 29, 87, 30, 90, 31, 93, 32, 96, 33, 99, 34, 102, 35, 105, 36, 108
Offset: 1

Views

Author

N. J. A. Sloane, Oct 02 2001

Keywords

Comments

Also number of 1's in n-th row of triangle in A071030. - Hans Havermann, May 26 2002
Number of ON cells at generation n of 1-D CA defined by Rule 54. - N. J. A. Sloane, Aug 09 2014
a(n)*A098557(n) equals the second right hand column of A167556. - Johannes W. Meijer, Nov 12 2009
Given a(1) = 1, for all n > 1, a(n) is the least positive integer not equal to a(n-1) such that the arithmetic mean of the first n terms is an integer. The sequence of arithmetic means of the first 1, 2, 3, ..., terms is 1, 2, 2, 3, 3, 4, 4, ... (A004526 disregarding its first three terms). - Rick L. Shepherd, Aug 20 2013

Examples

			a(13) = a(2*7 - 1) = 7, a(14) = a(2*7) = 21.
a(8) = 8-9+10-11+12-13+14-15+16 = 12. - _Bruno Berselli_, Jun 05 2013
		

Crossrefs

Interleaving of A000027 and A008585 (without first term).

Programs

  • ARIBAS
    maxarg := 75; for n := 1 to maxarg do if n mod 2 = 1 then write((n+1) div 2, " ") else write((n div 2)*3," "); end; end;
    
  • GAP
    a:=[];;  for n in [1..75] do if n mod 2 = 0 then Add(a,3*n/2); else Add(a,(n+1)/2); fi; od; a; # Muniru A Asiru, Oct 28 2018
    
  • Haskell
    import Data.List (transpose)
    a064455 n = n + if m == 0 then n' else - n'  where (n',m) = divMod n 2
    a064455_list = concat $ transpose [[1 ..], [3, 6 ..]]
    -- Reinhard Zumkeller, Oct 12 2013
    
  • Magma
    [(1/2)*n*(-1)^n+n+(1/4)*(1-(-1)^n): n in [1..80]]; // Vincenzo Librandi, Aug 10 2014
    
  • Maple
    A064455 := proc(n)
        if type(n,'even') then
            3*n/2 ;
        else
            (n+1)/2 ;
        end if;
    end proc: # R. J. Mathar, Aug 03 2015
  • Mathematica
    Table[ If[ EvenQ[n], 3n/2, (n + 1)/2], {n, 1, 70} ]
  • PARI
    a(n) = { if (n%2, (n + 1)/2, 3*n/2) } \\ Harry J. Smith, Sep 14 2009
    
  • PARI
    a(n)=if(n<3,2*n-1,((n-1)*(n-2))%(2*n-1)) \\ Jim Singh, Oct 14 2018
    
  • Python
    def A064455(n): return (3*n - (2*n-1)*(n%2))//2
    print([A064455(n) for n in range(1,81)]) # G. C. Greubel, Jan 30 2025

Formula

a(n) = (1/2)*n*(-1)^n + n + (1/4)*(1 - (-1)^n). - Stephen Crowley, Aug 10 2009
G.f.: x*(1+3*x) / ( (1-x)^2*(1+x)^2 ). - R. J. Mathar, Mar 30 2011
From Jaroslav Krizek, Mar 22 2011: (Start)
a(n) = n - A123684(n-1) for odd n.
a(n) = n + a(n-1) for even n.
a(n) = A123684(n) + A137501(n).
Abs( a(n) - A123684(n) ) = A052928(n). (End)
a(n) = Sum_{i=n..2*n} i*(-1)^i. - Bruno Berselli, Jun 05 2013
a(n) = n + floor(n/2)*(-1)^(n mod 2). - Bruno Berselli, Dec 14 2015
a(n) = (n^2-3*n+2) mod (2*n-1) for n>2. - Jim Singh, Oct 31 2018
E.g.f.: (1/2)*(x*cosh(x) + (1+3*x)*sinh(x)). - G. C. Greubel, Jan 30 2025

A050409 Truncated square pyramid numbers: a(n) = Sum_{k = n..2*n} k^2.

Original entry on oeis.org

0, 5, 29, 86, 190, 355, 595, 924, 1356, 1905, 2585, 3410, 4394, 5551, 6895, 8440, 10200, 12189, 14421, 16910, 19670, 22715, 26059, 29716, 33700, 38025, 42705, 47754, 53186, 59015, 65255, 71920, 79024, 86581, 94605, 103110, 112110, 121619
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 22 1999

Keywords

Crossrefs

Cf. A225144. - Bruno Berselli, Jun 06 2013
Cf. A045943: Sum_{k = n..2*n} k.
Cf. A304993: Sum_{k = n..2*n} k*(k+1)/2.

Programs

  • GAP
    List([0..40], n-> n*(n+1)*(14*n+1)/6); # G. C. Greubel, Oct 30 2019
  • Magma
    [&+[k^2: k in [n..2*n]]: n in [0..40]]; // Bruno Berselli, Feb 11 2011
    
  • Magma
    I:=[0, 5, 29, 86]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 22 2012
    
  • Maple
    seq(add((n+k)^2,k=0..n),n=0..40); # Zerinvary Lajos, Dec 01 2006
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{0,5,29,86},40] (* Vincenzo Librandi, Jun 22 2012 *)
    Table[(n(n+1)(14n+1))/6,{n,0,40}] (* Harvey P. Dale, Mar 08 2020 *)
  • PARI
    a(n)=sum(k=n,n+n,k^2)
    
  • PARI
    vector(40, n, n*(n-1)*(14*n-13)/6) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [n*(n+1)*(14*n+1)/6 for n in (0..40)] # G. C. Greubel, Oct 30 2019
    

Formula

a(n) = n*(n+1)*(14*n+1)/6.
a(n) = A132121(n,4) for n>3. - Reinhard Zumkeller, Aug 12 2007
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: x*(5+9*x)/(1-x)^4.
a(n) = A129371(2*n). (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 22 2012
E.g.f.: x*(30 + 57*x + 14*x^2)*exp(x)/6. - G. C. Greubel, Oct 30 2019

A089594 Alternating sum of squares to n.

Original entry on oeis.org

-1, 3, -6, 10, -15, 21, -28, 36, -45, 55, -66, 78, -91, 105, -120, 136, -153, 171, -190, 210, -231, 253, -276, 300, -325, 351, -378, 406, -435, 465, -496, 528, -561, 595, -630, 666, -703, 741, -780, 820, -861, 903, -946, 990, -1035, 1081, -1128, 1176, -1225, 1275
Offset: 1

Views

Author

Jon Perry, Dec 30 2003

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by: A[1,j]=j mod 2, A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=3, a(n-1)=(-1)^(n-1)*coeff(charpoly(A,x),x^(n-2)). - Milan Janjic, Jan 24 2010
Also triangular numbers with alternating signs. - Stanislav Sykora, Nov 26 2013

Examples

			a(6) = 1 + 4 - 9 + 16 - 25 + 36 = 3 + 7 + 11 = 21.
		

Crossrefs

Cf. A059841 (p=0,q=-1), A130472 (p=1,q=-1), this sequence (p=2,q=-1), A232599 (p=3,q=-1), A126646 (p=0,q=2), A036799 (p=1,q=2), A036800 (p=2,q=2), A036827 (p=3,q=2), A077925 (p=0,q=-2), A232600 (p=1,q=-2), A232601 (p=2,q=-2), A232602 (p=3,q=-2), A232603 (p=2,q=-1/2), A232604 (p=3,q=-1/2).
Cf. A000217.
Cf. A225144. [Bruno Berselli, Jun 06 2013]

Programs

Formula

From R. J. Mathar, Nov 05 2011: (Start)
a(n) = Sum_{i=1..n} (-1)^i*i^2 = (-1)^n*n*(n+1)/2.
G.f.: -x / (1+x)^3. (End)
a(n) = (-1)^n*det(binomial(i+2,j+1), 1 <= i,j <= n-1). - Mircea Merca, Apr 06 2013
G.f.: -W(0)/(2+2*x), where W(k) = 1 + 1/( 1 - x*(k+2)/( x*(k+2) - (k+1)/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 19 2013
E.g.f.: (1/2)*x*(x-2)*exp(-x). - G. C. Greubel, Mar 31 2021
Sum_{n>=1} 1/a(n) = 2 - 4*log(2). - Amiram Eldar, Jan 31 2023

A065679 If n is even, a(n) = n^2 else a(n) = n.

Original entry on oeis.org

0, 1, 4, 3, 16, 5, 36, 7, 64, 9, 100, 11, 144, 13, 196, 15, 256, 17, 324, 19, 400, 21, 484, 23, 576, 25, 676, 27, 784, 29, 900, 31, 1024, 33, 1156, 35, 1296, 37, 1444, 39, 1600, 41, 1764, 43, 1936, 45, 2116, 47, 2304, 49, 2500, 51, 2704, 53, 2916, 55, 3136, 57
Offset: 0

Views

Author

Robert G. Wilson v, Dec 03 2001

Keywords

Crossrefs

Cf. A000217, A065599, A016742 (bisection), A005408 (bisection).
Cf. A225144.

Programs

  • Magma
    /* By the third formula: */ A000217:=func; [A000217(n)+(-1)^n*A000217(n-1): n in [0..60]]; // Bruno Berselli, Jun 06 2013
  • Mathematica
    Table[ n^ (Mod[n + 1, 2] + 1), {n, 0, 60} ]
  • PARI
    a(n) = { if (n%2, n, n^2) } \\ Harry J. Smith, Oct 26 2009
    

Formula

a(n) = n^( (n+1) (mod 2) + 1 ).
O.g.f.: x*(1+x^2)*(1+4*x-x^2)/(1-x^2)^3. - Len Smiley, Dec 05 2001
a(n) = A000217(n)+(-1)^n*A000217(n-1) with A000217(-1)=0. - Bruno Berselli, Jun 06 2013
Showing 1-4 of 4 results.