A070895
Triangle read by rows where T(n+1,k)=T(n,k)+n*T(n-1,k) starting with T(n,n)=1 and T(n,k)=0 if n
1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 10, 6, 4, 1, 1, 26, 18, 8, 5, 1, 1, 76, 48, 28, 10, 6, 1, 1, 232, 156, 76, 40, 12, 7, 1, 1, 764, 492, 272, 110, 54, 14, 8, 1, 1, 2620, 1740, 880, 430, 150, 70, 16, 9, 1, 1, 9496, 6168, 3328, 1420, 636, 196, 88, 18, 10, 1, 1, 35696, 23568
Offset: 0
Examples
Rows start: 1; 1,1; 2,1,1; 4,3,1,1; 10,6,4,1,1; etc. Triangle begins 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 10, 6, 4, 1, 1, 26, 18, 8, 5, 1, 1, 76, 48, 28, 10, 6, 1, 1, 232, 156, 76, 40, 12, 7, 1, 1 Production matrix begins 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 4, 3, 1, 1, 0, 1, 10, 6, 4, 1, 1, 0, 1, 26, 18, 8, 5, 1, 1, 0, 1, 76, 48, 28, 10, 6, 1, 1, 0, 1, 232, 156, 76, 40, 12, 7, 1, 1, 0, 1 Inverse begins 1, -1, 1, -1, -1, 1, 0, -2, -1, 1, 0, 0, -3, -1, 1, 0, 0, 0, -4, -1, 1, 0, 0, 0, 0, -5, -1, 1, 0, 0, 0, 0, 0, -6, -1, 1 - _Paul Barry_, Mar 02 2011
Crossrefs
Formula
T(n, k+1)=(T(n, k-1)-T(n-1, k))/k for 0
A348482 Triangle read by rows: T(n,k) = (Sum_{i=k..n} i!)/(k!) for 0 <= k <= n.
1, 2, 1, 4, 3, 1, 10, 9, 4, 1, 34, 33, 16, 5, 1, 154, 153, 76, 25, 6, 1, 874, 873, 436, 145, 36, 7, 1, 5914, 5913, 2956, 985, 246, 49, 8, 1, 46234, 46233, 23116, 7705, 1926, 385, 64, 9, 1, 409114, 409113, 204556, 68185, 17046, 3409, 568, 81, 10, 1
Offset: 0
Comments
The matrix inverse M = T^(-1) has terms M(n,n) = 1 for n >= 0, M(n,n-1) = -(n+1) for n > 0, and M(n,n-2) = n for n > 1, otherwise 0.
Examples
The triangle T(n,k) for 0 <= k <= n starts: n\k : 0 1 2 3 4 5 6 7 8 9 ================================================================= 0 : 1 1 : 2 1 2 : 4 3 1 3 : 10 9 4 1 4 : 34 33 16 5 1 5 : 154 153 76 25 6 1 6 : 874 873 436 145 36 7 1 7 : 5914 5913 2956 985 246 49 8 1 8 : 46234 46233 23116 7705 1926 385 64 9 1 9 : 409114 409113 204556 68185 17046 3409 568 81 10 1 etc.
Links
- Sela Fried, On a sum involving factorials, 2024.
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Sum[i!, {i, k, n}]/k!; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Oct 20 2021 *)
Formula
T(n,n) = 1 and T(2*n,n) = A109398(n) for n >= 0; T(n,n-1) = n+1 for n > 0; T(n,n-2) = n^2 for n > 1.
T(n,k) - T(n-1,k) = (n!) / (k!) = A094587(n,k) for 0 <= k < n.
T(n,k) = (k+2) * (T(n,k+1) - T(n,k+2)) for 0 <= k < n-1.
T(n,k) = (T(n,k-1) - 1) / k for 0 < k <= n.
T(n,k) * T(n-1,k-1) - T(n-1,k) * T(n,k-1) = (n!) / (k!) for 0 < k < n.
T(n,1) = T(n,0)-1 = Sum_{k=0..n-1} T(n,k)/(k+2) for n > 0 (conjectured).
Sum_{k=0..n} binomial(k+r,k) * (1-k) * T(n+r,k+r) = binomial(n+r+1,n) for n >= 0 and r >= 0.
Sum_{k=0..n} (-1)^k * (k+1) * T(n,k) = (1 + (-1)^n) / 2 for n >= 0.
Sum_{k=0..n} (-1)^k * (k!) * T(n,k) = Sum_{k=0..n} (k!) * (1+(-1)^k) / 2 for n >= 0.
The row polynomials p(n,x) = Sum_{k=0..n} T(n,k) * x^k for n >= 0 satisfy the following equations:
(a) p(n,x) - p'(n,x) = (x^(n+1)-1) / (x-1) for n >= 0, where p' is the first derivative of p;
(b) p(n,x) - (n+1) * p(n-1,x) + n * p(n-2,x) = x^n for n > 1.
(c) p(n,x) = (x+1) * p(n-1,x) + 1 + Sum_{i=1..n-1} (d/dx)^i p(n-1,x) for n > 0 (conjectured).
Row sums p(n,1) equal A002104(n+1) for n >= 0.
Alternating row sums p(n,-1) equal A173184(n) for n >= 0 (conjectured).
The three conjectures stated above are true. See links. - Sela Fried, Jul 11 2024.
From Peter Luschny, Jul 11 2024: (Start)
T(n, k) = (t(k) - t(n + 1)) / k!, where t(n) = (-1)^(n + 1) * Gamma(n + 1) * Subfactorial(-(n + 1)).
T(n, k) = A143122(n, k) / k!. (End)
A352650 Triangle read by rows: T(n,k) = n * T(n-1,k) + (-1)^(n-k) for 0 <= k <= n with initial values T(n,k) = 0 if n < 0 or k < 0 or k > n.
1, 0, 1, 1, 1, 1, 2, 4, 2, 1, 9, 15, 9, 3, 1, 44, 76, 44, 16, 4, 1, 265, 455, 265, 95, 25, 5, 1, 1854, 3186, 1854, 666, 174, 36, 6, 1, 14833, 25487, 14833, 5327, 1393, 287, 49, 7, 1, 133496, 229384, 133496, 47944, 12536, 2584, 440, 64, 8, 1, 1334961, 2293839, 1334961, 479439, 125361, 25839, 4401, 639, 81, 9, 1
Offset: 0
Comments
Conjecture 1: T(n,k) = Sum_{i=0..n-k} (-1)^(n+k+i) * A326326(n-k,i) * n^i for 0 <= k <= n.
Conjecture 2: T(n,k) = T(n-k,0) + Sum_{i=1..n-k} T(n-k,i) * T(i+k,k) * k / (i + k - 1) for 0 < k <= n.
Examples
The triangle T(n,k) for 0 <= k <= n starts: n\k : 0 1 2 3 4 5 6 7 8 9 ================================================================ 0 : 1 1 : 0 1 2 : 1 1 1 3 : 2 4 2 1 4 : 9 15 9 3 1 5 : 44 76 44 16 4 1 6 : 265 455 265 95 25 5 1 7 : 1854 3186 1854 666 174 36 6 1 8 : 14833 25487 14833 5327 1393 287 49 7 1 9 : 133496 229384 133496 47944 12536 2584 440 64 8 1 etc.
Crossrefs
Programs
-
Maple
T := proc(n,k) option remember; if k > n then 0 else n * T(n-1,k) + (-1)^(n-k) fi end: for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Apr 11 2022
Formula
T(n,n) = 1 for n >= 0.
T(n,n-1) = n - 1 for n > 0.
T(n,n-2) = (n - 1)^2 for n > 1.
T(n,0) = A000166(n) for n >= 0.
T(n,1) = A002467(n) for n > 0.
T(n,2) = A000166(n) for n > 1.
T(n,k) + T(n,k+1) = (n!) / (k!) for 0 <= k <= n.
T(n,k) = (n - 1) * (T(n-1,k) + T(n-2,k)) for 0 <= k < n-1.
T(n,k) = (T(n,k-2) - (k - 2) * T(n,k-1)) / (k - 1) for 1 < k <= n.
The row polynomials p(n,x) = Sum_{k=0..n} T(n,k) * x^k satisfy recurrence equation p(n,x) = (n - 1) * (p(n-1,x) + p(n-2,x)) + x^n for n > 0 with initial value p(0,x) = 1.
Row sums are p(n,1) = abs(A009179(n)) for n >= 0.
Alternating row sums are p(n,-1) = (-1)^n for n >= 0.
T(n,k) * T(n+1,k+1) - T(n+1,k) * T(n,k+1) = (-1)^(n-k) * A094587(n,k) for 0 <= k <= n.
Define 3x3-matrices T(i,j) with n <= i <= n+2 and k <= j <= k+2. Then we have: det(T(i,j)) = 0^(n-k) for 0 <= k <= n.
E.g.f. of column k >= 0: Sum_{n>=k} T(n,k) * t^n / (n!) = (Sum_{n>=k} (-t)^n / (n!)) * (-1)^k / (1 - t).
E.g.f.: Sum_{n>=0, k=0..n} T(n,k) * x^k * t^n / (n!) = (x * exp(x * t) + exp(-t)) / ((1 + x) * (1 - t)).
p(n,x) = Sum_{k=0..n} ((n!)/(k!))*(x^(k+1) + (-1)^k)/(x + 1) for n >= 0.
T(n,k) = Sum_{i=0..n-k} (-1)^i * (n!) / ((k+i)!) for 0 <= k <= n.
A352988 Matrix inverse of triangle A352650.
1, 0, 1, -1, -1, 1, 0, -2, -2, 1, 0, 0, -3, -3, 1, 0, 0, 0, -4, -4, 1, 0, 0, 0, 0, -5, -5, 1, 0, 0, 0, 0, 0, -6, -6, 1, 0, 0, 0, 0, 0, 0, -7, -7, 1, 0, 0, 0, 0, 0, 0, 0, -8, -8, 1, 0, 0, 0, 0, 0, 0, 0, 0, -9, -9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, -10, 1
Offset: 0
Examples
The triangle T(n,k) for 0 <= k <= n starts: n\k : 0 1 2 3 4 5 6 7 8 9 ====================================================== 0 : 1 1 : 0 1 2 : -1 -1 1 3 : 0 -2 -2 1 4 : 0 0 -3 -3 1 5 : 0 0 0 -4 -4 1 6 : 0 0 0 0 -5 -5 1 7 : 0 0 0 0 0 -6 -6 1 8 : 0 0 0 0 0 0 -7 -7 1 9 : 0 0 0 0 0 0 0 -8 -8 1 etc.
Formula
T(n,n) = 1 for n >= 0, and T(n,n-1) = 1 - n for n > 0, and T(n,n-2) = 1 - n for n > 1, and T(n,k) = 0 if n < 0 or k < 0 or n < k or n > k+2.
G.f.: Sum_{n>=0, k=0..n} T(n,k) * x^k * t^n = (1 + t) * (1 - (1 + x) * t) / (1 - x * t)^2.
Alt. row sums equal (-1)^n for n >= 0.
A360657 Number triangle T associated with 2-Stirling numbers and Lehmer-Comtet numbers (see Comments and Formula section).
1, 0, 1, 0, 2, 1, 0, 9, 5, 1, 0, 64, 37, 9, 1, 0, 625, 369, 97, 14, 1, 0, 7776, 4651, 1275, 205, 20, 1, 0, 117649, 70993, 19981, 3410, 380, 27, 1, 0, 2097152, 1273609, 365001, 64701, 7770, 644, 35, 1, 0, 43046721, 26269505, 7628545, 1388310, 174951, 15834, 1022, 44, 1
Offset: 0
Comments
Triangle T is created using 2-Stirling numbers of the first (A049444) and the second (A143494) kind. The unusual construction is as follows:
Define A(n, k) by recurrence A(n, k) = A(n-1, k-1) + (k+1) * A(n-1, k) for 0 < k < n with initial values A(n, n) = 1, n >= 0, and A(n, 0) = 0, n > 0. A without column k = 0 is A143494. Let B = A^(-1) matrix inverse of A. B without column k = 0 is A049444. Now define T(m, k) = Sum_{i=0..m-k} B(m-k, i) * A(m-1+i, m-1) for 0 < k <= m = n/2 and T(m, 0) = 0^m for 0 <= m = n/2; T(i, j) = 0 if i < j or j < 0.
Matrix inverse of T is A360753. - Werner Schulte, Feb 21 2023
Conjecture: the transpose of this array is the upper triangular matrix U in the LU factorization of the array of Stirling numbers of the second kind read as a square array; the corresponding lower triangular array L is the triangle of Stirling numbers of the second kind. See the example section below. - Peter Bala, Oct 10 2023
Examples
Triangle T(n, k), 0 <= k <= n, starts: n\k : 0 1 2 3 4 5 6 7 8 9 ========================================================================== 0 : 1 1 : 0 1 2 : 0 2 1 3 : 0 9 5 1 4 : 0 64 37 9 1 5 : 0 625 369 97 14 1 6 : 0 7776 4651 1275 205 20 1 7 : 0 117649 70993 19981 3410 380 27 1 8 : 0 2097152 1273609 365001 64701 7770 644 35 1 9 : 0 43046721 26269505 7628545 1388310 174951 15834 1022 44 1 etc. From _Peter Bala_, Oct 10 2023: (Start) LU factorization of the square array of Stirling numbers of the second kind (apply Xu, Lemma 2.2): / 1 \ / 1 1 1 1 ...\ / 1 1 1 1 ... \ | 1 1 || 2 5 9 ...| | 1 3 6 10 ... | | 1 3 1 || 9 37 ...| = | 1 7 25 65 ... | | 1 7 6 1 || 64 ...| | 1 15 90 350 ... | | ... || ...| | ... | (End)
Links
- Wikipedia, LU decomposition
- Aimin Xu, Determinants Involving the Numbers of the Stirling-Type, Filomat 33:6 (2019), 1659-1666.
Crossrefs
Programs
-
PARI
tabl(m) = {my(n=2*m, A = matid(n), B, T); for( i = 2, n, for( j = 2, i, A[i, j] = A[i-1, j-1] + j * A[i-1, j] ) ); B = A^(-1); T = matrix( m, m, i, j, if( j == 1, 0^(i-1), sum( r = 0, i-j, B[i-j+1, r+1] * A[i-1+r, i-1] ) ) ); }
Formula
For the definition of triangle T see Comments section.
Conjectured formulas:
1. T(n, k) = (Sum_{i=k..n} A354794(n, i) * (i-1)!) / (k-1)! for 0 < k <= n.
2. T(n, k) - k * T(n, k+1) = A354794(n, k) for 0 <= k <= n.
3. T(n, 1) = A000169(n) = n^(n-1) for n > 0.
4. T(n, 2) = A055869(n-1) = n^(n-1) - (n-1)^(n-1) for n > 1.
5. T(n, k) = (Sum_{i=0..k-1} (-1)^i * binomial(k-1, i) * (n-i)^(n-1)) / (k-1)! for 0 < k <= n.
6. Sum_{i=1..n} (-1)^(n-i) * binomial(n-1+k, i-1) * T(n, i) * (i-1)! = (k-1)^(n-1) for n > 0 and k >= 0.
9. E.g.f. of column k > 0: Sum_{n>=k} T(n, k) * t^(n-1) / (n-1)! = (W(-t)/(-t)) * (Sum_{n>=k} A354794(n, k) * t^(n-1) / (n-1)!) where W is the Lambert_W-function.
A367962 Triangle read by rows. T(n, k) = Sum_{j=0..k} (n!/j!).
1, 1, 2, 2, 4, 5, 6, 12, 15, 16, 24, 48, 60, 64, 65, 120, 240, 300, 320, 325, 326, 720, 1440, 1800, 1920, 1950, 1956, 1957, 5040, 10080, 12600, 13440, 13650, 13692, 13699, 13700, 40320, 80640, 100800, 107520, 109200, 109536, 109592, 109600, 109601
Offset: 0
Examples
[0] 1; [1] 1, 2; [2] 2, 4, 5; [3] 6, 12, 15, 16; [4] 24, 48, 60, 64, 65; [5] 120, 240, 300, 320, 325, 326; [6] 720, 1440, 1800, 1920, 1950, 1956, 1957;
Crossrefs
Programs
-
Maple
T := (n, k) -> add(n!/j!, j = 0..k): seq(seq(T(n, k), k = 0..n), n = 0..9);
-
Mathematica
Module[{n=1},NestList[Append[n#,1+Last[#]n++]&,{1},10]] (* or *) Table[Sum[n!/j!,{j,0,k}],{n,0,10},{k,0,n}] (* Paolo Xausa, Dec 07 2023 *)
-
Python
from functools import cache @cache def a_row(n: int) -> list[int]: if n == 0: return [1] row = a_row(n - 1) + [0] for k in range(n): row[k] *= n row[n] = row[n - 1] + 1 return row
-
SageMath
def T(n, k): return sum(falling_factorial(n, n - j) for j in range(k + 1)) for n in range(9): print([T(n, k) for k in range(n + 1)])
A376582 Triangle of generalized Stirling numbers.
1, 5, 1, 26, 7, 1, 154, 47, 9, 1, 1044, 342, 74, 11, 1, 8028, 2754, 638, 107, 13, 1, 69264, 24552, 5944, 1066, 146, 15, 1, 663696, 241128, 60216, 11274, 1650, 191, 17, 1, 6999840, 2592720, 662640, 127860, 19524, 2414, 242, 19, 1, 80627040, 30334320, 7893840, 1557660, 245004, 31594, 3382, 299, 21, 1
Offset: 0
Examples
Triangle starts: [0] 1; [1] 5, 1; [2] 26, 7, 1; [3] 154, 47, 9, 1; [4] 1044, 342, 74, 11, 1; [5] 8028, 2754, 638, 107, 13, 1; [6] 69264, 24552, 5944, 1066, 146, 15, 1; [7] 663696, 241128, 60216, 11274, 1650, 191, 17, 1;
Crossrefs
Programs
-
Maple
T:=(m,n,k)->add(Stirling1(i+m,m)*binomial(n+m+1,n-k-i)*(n+m-k)!/(i+m)!,i=0..n-k): m:=1: seq(seq(T(m,n,k), k=0..n), n=0..10);
Formula
T(m,n,k) = Sum_{i=0..n-k} Stirling1(i+m,m)*binomial(n+m+1,n-k-i)*(n+m-k)!/(i+m)!, for m=1.
A138108 A triangular sequence of coefficients based on the expansion of an Hamiltonian resolvent or Green's function: p(x,t)=Exp[x*t]/(x-t); where t is taken as the Hamiltonian variable and x as the complex variable.
1, 1, 0, 1, 2, 0, 2, 0, 1, 6, 0, 6, 0, 3, 0, 1, 24, 0, 24, 0, 12, 0, 4, 0, 1, 120, 0, 120, 0, 60, 0, 20, 0, 5, 0, 1, 720, 0, 720, 0, 360, 0, 120, 0, 30, 0, 6, 0, 1, 5040, 0, 5040, 0, 2520, 0, 840, 0, 210, 0, 42, 0, 7, 0, 1, 40320, 0, 40320, 0, 20160, 0, 6720, 0, 1680, 0, 336, 0, 56, 0, 8
Offset: 1
Comments
Row sums are:
{1, 2, 5, 16, 65, 326, 1957, 13700, 109601, 986410, 9864101};
If you use a transform of;
x->Sqrt[y];
you get A094587.
The wave function form of the Green's function is:
G(x)*Phi[x,n]=Phi[x,n]/(x-E(n)).
Examples
{1}, {1, 0, 1}, {2, 0, 2, 0, 1}, {6, 0, 6, 0, 3, 0, 1}, {24, 0, 24, 0, 12, 0, 4, 0, 1}, {120, 0, 120, 0, 60, 0, 20, 0, 5, 0, 1}, {720, 0, 720, 0, 360, 0, 120, 0, 30, 0, 6, 0, 1}, {5040, 0, 5040, 0, 2520, 0, 840, 0, 210, 0, 42, 0, 7, 0, 1}, {40320, 0, 40320, 0, 20160, 0, 6720, 0, 1680, 0, 336, 0, 56, 0, 8, 0, 1}, {362880, 0, 362880, 0, 181440, 0, 60480, 0, 15120, 0, 3024, 0, 504, 0, 72, 0, 9, 0, 1}, {3628800, 0, 3628800, 0, 1814400, 0, 604800, 0, 151200, 0, 30240, 0, 5040, 0, 720, 0, 90, 0, 10, 0, 1}
References
- A. Messiah, Quantum mechanics, vol. 2, p. 712, fig.XVIII.2, North Holland, 1969.
Programs
-
Mathematica
p[t_] = Exp[x*t]/(x - t); Table[ ExpandAll[x^(n + 1)*n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[n!* CoefficientList[( x^(n + 1)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]), x], {n, 0, 10}]; Flatten[a]
Formula
p(x,t)=Exp[x*t]/(x-t)=sum(P(x,n)*t^n/n!,{n,0,Infinity}); Out_n,m=n!Coefficients(x^(n+1)*P(x,n))
A143080 Triangular sequence of coefficients from an exponential based polynomial: p(x,n)=If[n == 0, 1, -(2*n - 1)!*x^(2*n)*(Sum[x^i/(i + 2*n)!, {i, 0, Infinity}] - Exp[x]/x^(2*n))].
1, 1, 1, 6, 6, 3, 1, 120, 120, 60, 20, 5, 1, 5040, 5040, 2520, 840, 210, 42, 7, 1, 362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1, 39916800, 39916800, 19958400, 6652800, 1663200, 332640, 55440, 7920, 990, 110, 11, 1, 6227020800, 6227020800
Offset: 1
Comments
Row sums are: 1, 2, 16, 326, 13700, 986410, 108505112, ...
These polynomials are based on: f(x)=1/(1-x)-exp(x).
The n-th row is the coefficient list of the permanental polynomial of the (2n-1)X(2n-1) matrix consisting entirely of 1's (see latter Mathematica code below). - John M. Campbell, Jul 05 2012
Examples
{1}, {1, 1}, {6, 6, 3, 1}, {120, 120, 60, 20, 5, 1}, {5040, 5040, 2520, 840, 210, 42, 7, 1}, {362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1}, {39916800, 39916800, 19958400, 6652800, 1663200, 332640, 55440, 7920, 990, 110, 11, 1}, {6227020800, 6227020800, 3113510400, 1037836800, 259459200, 51891840, 8648640, 1235520, 154440, 17160, 1716, 156, 13, 1}
Programs
-
Mathematica
Clear[f, x, n, a]; f[x_, n_] := f[x, n] = If[n == 0, 1, -(2*n - 1)!*x^(2*n)*(Sum[x^i/(i + 2*n)!, {i, 0, Infinity}] - Exp[x]/x^(2*n))]; a = Table[CoefficientList[FullSimplify[f[x, n]], x], {n, 0, 10}]; Flatten[a] Permanent[m_List] := With[{v = Array[x, Length[m]]}, Coefficient[Times @@ (m.v), Times @@ v]]; A[q_] := Array[1 &, {q, q}]; Flatten[Table[Abs[CoefficientList[Expand[Permanent[A[2*n-1] - IdentityMatrix[2*n-1]*x]], x]], {n, 6}]] (* John M. Campbell, Jul 05 2012 *)
Formula
p(x,n)=If[n == 0, 1, -(2*n - 1)!*x^(2*n)*(Sum[x^i/(i + 2*n)!, {i, 0, Infinity}] - Exp[x]/x^(2*n))]; t(n,m)=Coefficients(p)x,n)).
A373168 Triangle read by rows: the exponential almost-Riordan array ( exp(x/(1-x)) | 1/(1-x), x ).
1, 1, 1, 3, 1, 1, 13, 2, 2, 1, 73, 6, 6, 3, 1, 501, 24, 24, 12, 4, 1, 4051, 120, 120, 60, 20, 5, 1, 37633, 720, 720, 360, 120, 30, 6, 1, 394353, 5040, 5040, 2520, 840, 210, 42, 7, 1, 4596553, 40320, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 58941091, 362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1
Offset: 0
Examples
The triangle begins: 1; 1, 1; 3, 1, 1; 13, 2, 2, 1; 73, 6, 6, 3, 1; 501, 24, 24, 12, 4, 1; 4051, 120, 120, 60, 20, 5, 1; ...
Links
- Y. Alp and E. G. Kocer, Exponential Almost-Riordan Arrays, Results Math 79, 173 (2024). See page 13.
Crossrefs
Programs
-
Mathematica
T[n_,0]:=n!SeriesCoefficient[Exp[x/(1-x)],{x,0,n}]; T[n_,k_]:=(n-1)!/(k-1)!SeriesCoefficient[1/(1-x)*x^(k-1),{x,0,n-1}]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten
Formula
T(n,0) = n! * [x^n] exp(x/(1-x)); T(n,k) = (n-1)!/(k-1)! * [x^(n-1)] 1/(1-x)*x^(k-1).
T(n,3) = A001710(n-1) for n > 2.
T(n,4) = A001715(n-1) for n > 3.
T(n,5) = A001720(n-1) for n > 4.
T(n,6) = A001725(n-1) for n > 5.
T(n,7) = A001730(n-1) for n > 6.
T(n,8) = A049388(n-8) for n > 7.
T(n,9) = A049389(n-9) for n > 8.
T(n,10) = A049398(n-10) for n > 9.
T(n,11) = A051431(n-11) for n > 10.
Comments