cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 93 results. Next

A122198 Permutation of natural numbers: a recursed variant of A122155.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 5, 8, 15, 14, 13, 12, 9, 10, 11, 16, 31, 30, 29, 28, 25, 26, 27, 24, 17, 18, 19, 20, 23, 22, 21, 32, 63, 62, 61, 60, 57, 58, 59, 56, 49, 50, 51, 52, 55, 54, 53, 48, 33, 34, 35, 36, 39, 38, 37, 40, 47, 46, 45, 44, 41, 42, 43, 64, 127, 126, 125, 124, 121
Offset: 0

Views

Author

Antti Karttunen, Aug 25 2006

Keywords

Comments

Maps between A096115 and A096111.

Crossrefs

Inverse: A122199.

Programs

Formula

a(0)=0, otherwise a(n) = A122155(A053644(n)+a(A053645(n))).

A122199 Permutation of natural numbers: a recursed variant of A122155.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 5, 8, 13, 14, 15, 12, 11, 10, 9, 16, 25, 26, 27, 28, 31, 30, 29, 24, 21, 22, 23, 20, 19, 18, 17, 32, 49, 50, 51, 52, 55, 54, 53, 56, 61, 62, 63, 60, 59, 58, 57, 48, 41, 42, 43, 44, 47, 46, 45, 40, 37, 38, 39, 36, 35, 34, 33, 64, 97, 98, 99, 100, 103, 102
Offset: 0

Views

Author

Antti Karttunen, Aug 25 2006

Keywords

Comments

Maps between A096111 and A096115.

Crossrefs

Programs

Formula

a(0)=0, otherwise a(n) = A053644(A122155(n)) + a(A053645(A122155(n))).

A333492 Position of first appearance of n in A271410 (LCM of binary indices).

Original entry on oeis.org

1, 2, 4, 8, 16, 6, 64, 128, 256, 18, 1024, 12, 4096, 66, 20, 32768, 65536, 258, 262144, 24, 68, 1026, 4194304, 132, 16777216, 4098, 67108864, 72, 268435456, 22, 1073741824, 2147483648, 1028, 65538, 80, 264, 68719476736, 262146, 4100, 144, 1099511627776, 70, 4398046511104
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2020

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The sequence together with the corresponding binary expansions and binary indices begins:
      1:                 1 ~ {1}
      2:                10 ~ {2}
      4:               100 ~ {3}
      8:              1000 ~ {4}
     16:             10000 ~ {5}
      6:               110 ~ {2,3}
     64:           1000000 ~ {7}
    128:          10000000 ~ {8}
    256:         100000000 ~ {9}
     18:             10010 ~ {2,5}
   1024:       10000000000 ~ {11}
     12:              1100 ~ {3,4}
   4096:     1000000000000 ~ {13}
     66:           1000010 ~ {2,7}
     20:             10100 ~ {3,5}
  32768:  1000000000000000 ~ {16}
  65536: 10000000000000000 ~ {17}
    258:         100000010 ~ {2,9}
		

Crossrefs

The version for prime indices is A330225.
The version for standard compositions is A333225.
Let q(k) be the binary indices of k:
- The sum of q(k) is A029931(k).
- The elements of q(k) are row k of A048793.
- The product of q(k) is A096111(k).
- The LCM of q(k) is A271410(k).
- The GCD of q(k) is A326674(k).
GCD of prime indices is A289508.
LCM of prime indices is A290103.
LCM of standard compositions is A333226.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    q=Table[LCM@@bpe[n],{n,10000}];
    Table[Position[q,i][[1,1]],{i,First[Split[Union[q],#1+1==#2&]]}]

Extensions

Terms a(23) and beyond from Giovanni Resta, Mar 29 2020

A357186 Take the k-th composition in standard order for each part k of the n-th composition in standard order, then add up everything.

Original entry on oeis.org

0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 5, 5, 5, 4, 4, 5, 5, 4, 5, 5, 5, 3, 4, 5, 5, 4, 5, 5, 5, 5, 5, 6, 6, 5, 6, 6, 6, 4, 5, 5, 5, 5, 6, 6, 6, 5, 5, 6, 6, 5, 6, 6, 6, 3, 4, 5, 5, 5, 6, 6, 6, 5, 5, 6, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 7, 7
Offset: 0

Views

Author

Gus Wiseman, Sep 28 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 92 in standard order is (2,1,1,3), with compositions ((2),(1),(1),(1,1)) so a(92) = 2 + 1 + 1 + 1 + 1 = 6.
		

Crossrefs

See link for sequences related to standard compositions.
This is the sum of A029837 over the n-th composition in standard order.
Vertex degrees are A133494.
The version for Heinz numbers of partitions is A325033.
Row sums of A357135.
First differences are A357187.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[stc/@stc[n]/.List->Plus,{n,0,100}]

Formula

a(n) = A029837(A357134(n)).

A371293 Numbers whose binary indices have (1) prime indices covering an initial interval and (2) squarefree product.

Original entry on oeis.org

1, 2, 3, 6, 7, 22, 23, 32, 33, 48, 49, 86, 87, 112, 113, 516, 517, 580, 581, 1110, 1111, 1136, 1137, 1604, 1605, 5206, 5207, 5232, 5233, 5700, 5701, 8212, 8213, 9236, 9237, 13332, 13333, 16386, 16387, 16450, 16451, 17474, 17475, 21570, 21571, 24576, 24577
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their prime indices of binary indices begin:
    1: {{}}
    2: {{1}}
    3: {{},{1}}
    6: {{1},{2}}
    7: {{},{1},{2}}
   22: {{1},{2},{3}}
   23: {{},{1},{2},{3}}
   32: {{1,2}}
   33: {{},{1,2}}
   48: {{3},{1,2}}
   49: {{},{3},{1,2}}
   86: {{1},{2},{3},{4}}
   87: {{},{1},{2},{3},{4}}
  112: {{3},{1,2},{4}}
  113: {{},{3},{1,2},{4}}
  516: {{2},{1,3}}
  517: {{},{2},{1,3}}
  580: {{2},{4},{1,3}}
  581: {{},{2},{4},{1,3}}
		

Crossrefs

Without the covering condition we have A371289.
Without squarefree product we have A371292.
Interchanging binary and prime indices gives A371448.
A000009 counts partitions covering initial interval, compositions A107429.
A000670 counts ordered set partitions, allowing empty sets A000629.
A005117 lists squarefree numbers.
A011782 counts multisets covering an initial interval.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A131689 counts patterns by number of distinct parts.
A302521 lists MM-numbers of set partitions, with empties A302505.
A326701 lists BII-numbers of set partitions.
A368533 lists numbers with squarefree binary indices, prime indices A302478.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[1000],SquareFreeQ[Times @@ bpe[#]]&&normQ[Join@@prix/@bpe[#]]&]

Formula

Intersection of A371292 and A371289.

A371443 Numbers whose binary indices are nonprime numbers.

Original entry on oeis.org

1, 8, 9, 32, 33, 40, 41, 128, 129, 136, 137, 160, 161, 168, 169, 256, 257, 264, 265, 288, 289, 296, 297, 384, 385, 392, 393, 416, 417, 424, 425, 512, 513, 520, 521, 544, 545, 552, 553, 640, 641, 648, 649, 672, 673, 680, 681, 768, 769, 776, 777, 800, 801, 808
Offset: 1

Views

Author

Gus Wiseman, Mar 30 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their binary expansions and binary indices begin:
    1:          1 ~ {1}
    8:       1000 ~ {4}
    9:       1001 ~ {1,4}
   32:     100000 ~ {6}
   33:     100001 ~ {1,6}
   40:     101000 ~ {4,6}
   41:     101001 ~ {1,4,6}
  128:   10000000 ~ {8}
  129:   10000001 ~ {1,8}
  136:   10001000 ~ {4,8}
  137:   10001001 ~ {1,4,8}
  160:   10100000 ~ {6,8}
  161:   10100001 ~ {1,6,8}
  168:   10101000 ~ {4,6,8}
  169:   10101001 ~ {1,4,6,8}
  256:  100000000 ~ {9}
  257:  100000001 ~ {1,9}
  264:  100001000 ~ {4,9}
  265:  100001001 ~ {1,4,9}
  288:  100100000 ~ {6,9}
  289:  100100001 ~ {1,6,9}
  296:  100101000 ~ {4,6,9}
		

Crossrefs

For powers of 2 instead of nonprime numbers we have A253317.
For prime indices instead of binary indices we have A320628.
For prime instead of nonprime we have A326782.
For composite numbers we have A371444.
An opposite version is A371449.
A000040 lists prime numbers, complement A018252.
A000961 lists prime-powers.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],And@@Not/@PrimeQ/@bpe[#]&]

A371444 Numbers whose binary indices are composite numbers.

Original entry on oeis.org

8, 32, 40, 128, 136, 160, 168, 256, 264, 288, 296, 384, 392, 416, 424, 512, 520, 544, 552, 640, 648, 672, 680, 768, 776, 800, 808, 896, 904, 928, 936, 2048, 2056, 2080, 2088, 2176, 2184, 2208, 2216, 2304, 2312, 2336, 2344, 2432, 2440, 2464, 2472, 2560, 2568
Offset: 1

Views

Author

Gus Wiseman, Mar 30 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their binary expansions and binary indices begin:
     8:           1000 ~ {4}
    32:         100000 ~ {6}
    40:         101000 ~ {4,6}
   128:       10000000 ~ {8}
   136:       10001000 ~ {4,8}
   160:       10100000 ~ {6,8}
   168:       10101000 ~ {4,6,8}
   256:      100000000 ~ {9}
   264:      100001000 ~ {4,9}
   288:      100100000 ~ {6,9}
   296:      100101000 ~ {4,6,9}
   384:      110000000 ~ {8,9}
   392:      110001000 ~ {4,8,9}
   416:      110100000 ~ {6,8,9}
   424:      110101000 ~ {4,6,8,9}
   512:     1000000000 ~ {10}
   520:     1000001000 ~ {4,10}
   544:     1000100000 ~ {6,10}
   552:     1000101000 ~ {4,6,10}
   640:     1010000000 ~ {8,10}
   648:     1010001000 ~ {4,8,10}
   672:     1010100000 ~ {6,8,10}
		

Crossrefs

For powers of 2 instead of composite numbers we have A253317.
For prime indices we have the even case of A320628.
For prime instead of composite we have A326782.
This is the even case of A371444.
An opposite version is A371449.
A000040 lists prime numbers, complement A018252.
A000961 lists prime-powers.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],EvenQ[#]&&And@@Not/@PrimeQ/@bpe[#]&]

A371453 Numbers whose binary indices are all squarefree semiprimes.

Original entry on oeis.org

32, 512, 544, 8192, 8224, 8704, 8736, 16384, 16416, 16896, 16928, 24576, 24608, 25088, 25120, 1048576, 1048608, 1049088, 1049120, 1056768, 1056800, 1057280, 1057312, 1064960, 1064992, 1065472, 1065504, 1073152, 1073184, 1073664, 1073696, 2097152, 2097184
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their binary expansions and binary indices begin:
       32:                 100000 ~ {6}
      512:             1000000000 ~ {10}
      544:             1000100000 ~ {6,10}
     8192:         10000000000000 ~ {14}
     8224:         10000000100000 ~ {6,14}
     8704:         10001000000000 ~ {10,14}
     8736:         10001000100000 ~ {6,10,14}
    16384:        100000000000000 ~ {15}
    16416:        100000000100000 ~ {6,15}
    16896:        100001000000000 ~ {10,15}
    16928:        100001000100000 ~ {6,10,15}
    24576:        110000000000000 ~ {14,15}
    24608:        110000000100000 ~ {6,14,15}
    25088:        110001000000000 ~ {10,14,15}
    25120:        110001000100000 ~ {6,10,14,15}
  1048576:  100000000000000000000 ~ {21}
		

Crossrefs

Partitions of this type are counted by A002100, squarefree case of A101048.
For primes instead of squarefree semiprimes we get A326782.
For prime indices instead of binary indices we have A339113, A339112.
Allowing any squarefree numbers gives A368533.
This is the squarefree case of A371454.
A001358 lists squarefree semiprimes, squarefree A006881.
A005117 lists squarefree numbers.
A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Maple
    M:= 26: # for terms < 2^M
    P:= select(isprime, [$2..(M+1)/2]): nP:= nops(P):
    S:= select(`<`,{seq(seq(P[i]*P[j],i=1..j-1),j=1..nP)},M+1):
    R:= map(proc(s) local i; add(2^(i-1),i=s) end proc, combinat:-powerset(S) minus {{}}):
    sort(convert(R,list)); # Robert Israel, Apr 04 2024
  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    sqfsemi[n_]:=SquareFreeQ[n]&&PrimeOmega[n]==2;
    Select[Range[10000],And@@sqfsemi/@bix[#]&]
  • Python
    def A371453(n): return sum(1<<A006881(i)-1 for i, j in enumerate(bin(n)[:1:-1],1) if j=='1')
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A371453(n):
        def f(x,n): return int(n+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        def A006881(n):
            m, k = n, f(n,n)
            while m != k:
                m, k = k, f(k,n)
            return m
        return sum(1<<A006881(i)-1 for i, j in enumerate(bin(n)[:1:-1],1) if j=='1') # Chai Wah Wu, Aug 16 2024

A371735 Maximal length of a set partition of the binary indices of n into blocks all having the same sum.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
If a(n) = k then the binary indices of n (row n of A048793) are k-quanimous (counted by A371783).

Examples

			The binary indices of 119 are {1,2,3,5,6,7}, and the set partitions into blocks with the same sum are:
  {{1,7},{2,6},{3,5}}
  {{1,5,6},{2,3,7}}
  {{1,2,3,6},{5,7}}
  {{1,2,3,5,6,7}}
So a(119) = 3.
		

Crossrefs

Set partitions of this type are counted by A035470, A336137.
A version for factorizations is A371733.
Positions of 1's are A371738.
Positions of terms > 1 are A371784.
A001055 counts factorizations.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A070939 gives length of binary expansion.
A321452 counts quanimous partitions, ranks A321454.
A326031 gives weight of the set-system with BII-number n.
A371783 counts k-quanimous partitions.
A371789 counts non-quanimous sets, differences A371790.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Max[Length/@Select[sps[bix[n]],SameQ@@Total/@#&]],{n,0,100}]

A372431 Positive integers k such that the prime indices of k are disjoint from the binary indices of k.

Original entry on oeis.org

1, 2, 4, 7, 8, 9, 10, 11, 12, 13, 16, 17, 19, 21, 23, 24, 25, 26, 29, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 53, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 72, 73, 74, 76, 79, 80, 81, 82, 83, 84, 86, 89, 92, 93, 94, 96, 97, 98, 101
Offset: 1

Views

Author

Gus Wiseman, May 03 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The binary indices of 65 are {1,7}, and the prime indices are {3,6}, so 65 is in the sequence.
The terms together with their prime indices begin:
     1: {}
     2: {1}
     4: {1,1}
     7: {4}
     8: {1,1,1}
     9: {2,2}
    10: {1,3}
    11: {5}
    12: {1,1,2}
    13: {6}
    16: {1,1,1,1}
The terms together with their binary expansions and binary indices begin:
   1:       1 ~ {1}
   2:      10 ~ {2}
   4:     100 ~ {3}
   7:     111 ~ {1,2,3}
   8:    1000 ~ {4}
   9:    1001 ~ {1,4}
  10:    1010 ~ {2,4}
  11:    1011 ~ {1,2,4}
  12:    1100 ~ {3,4}
  13:    1101 ~ {1,3,4}
  16:   10000 ~ {5}
		

Crossrefs

For subset instead of disjoint we have A372430.
The complement is A372432.
Equal lengths: A071814, zeros of A372441.
Equal sums: A372427, zeros of A372428.
Equal maxima: A372436, zeros of A372442.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[bix[#],prix[#]]=={}&]
Previous Showing 71-80 of 93 results. Next