cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A316098 Abundant numbers that differ from the next abundant number by 4.

Original entry on oeis.org

20, 36, 56, 66, 80, 84, 96, 104, 108, 140, 156, 176, 192, 200, 204, 216, 224, 260, 272, 276, 300, 308, 320, 336, 360, 368, 380, 392, 396, 416, 440, 444, 456, 464, 476, 486, 500, 516, 528, 540, 546, 560, 572, 576, 608, 612, 620, 636, 644, 650, 680, 696, 704
Offset: 1

Views

Author

Muniru A Asiru, Jun 25 2018

Keywords

Examples

			20 is abundant, 21, 22 and 23 are deficient, 24 is abundant.
36 is abundant, 37, 38 and 39 are deficient, 40 is abundant.
		

Crossrefs

Subsequence of A005101.
Abundant numbers that differ from the next abundant number by k: A096399 (k=1), A228382 (k=3), this sequence (k=4), A306497 (k=5), A316099 (k=6).
Cf. A316096.

Programs

  • GAP
    A:=Filtered([1..800],n->Sigma(n)>2*n);;  a:=List(Filtered([1..Length(A)-1],i->A[i+1]-A[i]=4),j->A[j]);
    
  • Maple
    with(numtheory):  A:=select(n->sigma(n)>2*n,[$1..800]): a:=seq(A[i],i in select(n->A[n+1]-A[n]=4,[$1..nops(A)-1]));
  • Mathematica
    q[n_] := DivisorSigma[1,n] > 2 n; Select[Range[704], q[#] && q[# + 4] && ! q[# + 1] && ! q[# + 2] && ! q[# + 3] &] (* Giovanni Resta, Jul 01 2018 *)
    SequencePosition[Table[If[DivisorSigma[1,n]>2n,1,0],{n,750}],{1,0,0,0,1}][[;;,1]] (* Harvey P. Dale, Mar 02 2023 *)
  • PARI
    list(lim) = {my(k = 1, k2); for(k2 = 2, lim, if(sigma(k2, -1) > 2, if(k2 == k1 + 4, print1(k1, ", ")); k1 = k2));} \\ Amiram Eldar, Mar 01 2025

Formula

a(n) = A005101(A316096(n)). - Amiram Eldar, Mar 01 2025

A328327 Numbers k such that both k and k+1 are Zumkeller numbers (A083207).

Original entry on oeis.org

5984, 7424, 21735, 21944, 26144, 27404, 39375, 43064, 49664, 56924, 58695, 61424, 69615, 70784, 76544, 77175, 79695, 81080, 81675, 82004, 84524, 84644, 89775, 91664, 98175, 103455, 104895, 106784, 109395, 111824, 116655, 116864, 120015, 121904, 122264, 126224
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2019

Keywords

Comments

Terms k such that both k and k+1 are primitive Zumkeller numbers (A180332) are 82004, 84524, 158235, 516704, 2921535, 5801984, ... (A361934).
There are infinitely many such k as proven by Somu et al. (2023). - Duc Van Khanh Tran, Dec 07 2023

Crossrefs

Subsequence of A096399.

Programs

  • Mathematica
    zumkellerQ[n_] := Module[{d = Divisors[n], t, ds, x}, ds = Plus @@ d; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; zq1 = False; s = {}; Do[zq2 = zumkellerQ[n]; If[zq1 && zq2, AppendTo[s, n - 1]]; zq1 = zq2, {n, 2, 10^5}]; s (* after T. D. Noe at A083207 *)
  • Python
    from itertools import count, islice
    from sympy import divisors
    def A328327_gen(startvalue=1): # generator of terms >= startvalue
        m = -1
        for n in count(max(startvalue,1)):
            d = divisors(n)
            s = sum(d)
            if s&1^1 and n<<1<=s:
                d = d[:-1]
                s2, ld = (s>>1)-n, len(d)
                z = [[0 for  in range(s2+1)] for  in range(ld+1)]
                for i in range(1, ld+1):
                    y = min(d[i-1], s2+1)
                    z[i][:y] = z[i-1][:y]
                    for j in range(y,s2+1):
                        z[i][j] = max(z[i-1][j],z[i-1][j-y]+y)
                    if z[i][s2] == s2:
                        if m == n-1:
                            yield m
                        m = n
                        break
    A328327_list = list(islice(A328327_gen(),5)) # Chai Wah Wu, Feb 13 2023

A333951 Numbers k such that both k and k+1 are recursive abundant numbers (A333928).

Original entry on oeis.org

56924, 82004, 84524, 109395, 158235, 241604, 261260, 266475, 285075, 361844, 442035, 445004, 469755, 611324, 666315, 694484, 712844, 922635, 968715, 971684, 1102724, 1172115, 1190475, 1199835, 1239524, 1304324, 1338435, 1430715, 1442924, 1486275, 1523115, 1550835
Offset: 1

Views

Author

Amiram Eldar, Apr 11 2020

Keywords

Examples

			56924 is a term since A333926(56924) = 120960 > 2 * 56924, and A333926(56925) = 116064 > 2 * 56925.
		

Crossrefs

Subsequence of A333928.
Analogous sequences: A096399, A283418 (primitive), A318167 (bi-unitary), A327635 (infinitary), A327942 (nonunitary), A331412 (unitary).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); recAbQ[n_] := recDivSum[n] > 2*n; Select[Range[2*10^5], recAbQ[#] && recAbQ[# + 1] &]

A381548 Numbers k such that k and k+1 both have an odd number of abundant divisors.

Original entry on oeis.org

5984, 7424, 21735, 27404, 43064, 56924, 76544, 82004, 89775, 109395, 144584, 158235, 164835, 165375, 174824, 222704, 266475, 271215, 300104, 311024, 322335, 326655, 326864, 334304, 347984, 350175, 371924, 387584, 393855, 414315, 442035, 445004, 447524, 477224
Offset: 1

Views

Author

Amiram Eldar, Feb 26 2025

Keywords

Comments

Numbers k such that k and k+1 are both in A381546.

Examples

			5984 is a term since it has 9 abundant divisors (88, 176, 272, 352, 544, 748, 1496, 2992, 5984) and 5984 + 1 = 5985 has one abundant divisor (5985 itself).
21735 is a term since it has 3 abundant divisors (945, 7245, 21735) and 21735 + 1 = 21736 has 9 abundant divisors (88, 104, 572, 836, 1144, 1672, 1976, 10868, 21736).
		

Crossrefs

Subsequence of A096399 and A381546.
Subsequences: A381549.

Programs

  • Mathematica
    q[n_] := q[n] = OddQ[DivisorSum[n, 1 &, DivisorSigma[-1, #] > 2 &]]; Select[Range[500000], q[#] && q[#+1] &]
  • PARI
    is1(k) = sumdiv(k, d, (sigma(d, -1) > 2)) % 2;
    list(lim) = forstep(k = 3, lim, 2, if(is1(k), if(is1(k-1), print1(k-1, ", ")); if(is1(k+1), print1(k, ", "))));

A306497 Abundant numbers that differ from the next abundant number by 5.

Original entry on oeis.org

5391411025, 26957055120, 28816162375, 33426748350, 34393484125, 37739877175, 40342627320, 48150877770, 50866790970, 53356378075, 59305521270, 60711976320, 61164628525, 63395557225, 64899009175, 67275433225, 70088343325, 74922022170, 75665665075, 76781129425
Offset: 1

Views

Author

Sergio Pimentel, Feb 19 2019

Keywords

Comments

Since all multiples of 6 are abundant, numbers in this sequence have to be abundant numbers of the form 6n or 6n + 1. Most common difference between abundant numbers is 6, followed by 2, 4, 3, 1. 5 is the least common.

Examples

			a(1) = 5391411025 is in the sequence since it is abundant and the next abundant number is 5391411030 which is a(1)+5 and all the numbers in between are deficient.
		

Crossrefs

Programs

  • PARI
    isok(n) = for(k=1, 4, if(sigma(n+k) > 2*(n+k), return(0))); (sigma(n) > 2*n) && (sigma(n+5) > 2*(n+5)); \\ Daniel Suteu, Jul 24 2019

Formula

Either a(n) or a(n)+5 are in A115414. - Amiram Eldar, Jul 16 2019

Extensions

More terms from Amiram Eldar, Jul 16 2019

A357608 Numbers k such that k and k+1 are both in A357605.

Original entry on oeis.org

76544, 104895, 126224, 165375, 170624, 174824, 201824, 245024, 257984, 271215, 273104, 316575, 338624, 387855, 447615, 469664, 477224, 540224, 618975, 633555, 641024, 659295, 705375, 752895, 770175, 842624, 843975, 862784, 870975, 893024, 913275, 957824, 1047375
Offset: 1

Views

Author

Amiram Eldar, Oct 06 2022

Keywords

Comments

Numbers k such that A162296(k) > 2*k and A162296(k+1) > 2*(k+1).

Examples

			76544 is a term since 76544 and 76545 are both in A357605: A162296(76544) = 170688 > 2*76544 and A162296(76545) = 157248 > 2*76545.
		

Crossrefs

Cf. A162296.
Subsequence of A013929, A096399 and A357605.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) > 2*n]; Select[Range[2, 10^6], q[#] && q[#+1] &]

A329525 a(n) is the smallest positive number k such that k and k+n are both abundant.

Original entry on oeis.org

5775, 18, 942, 20, 940, 12, 945, 12, 936, 20, 4725, 12, 4712, 40, 930, 20, 928, 12, 2816, 20, 924, 18, 945, 12, 920, 30, 918, 12, 2176, 12, 3465, 24, 912, 20, 910, 12, 7208, 18, 906, 20, 4095, 12, 5312, 12, 900, 20, 945, 12, 896, 20, 894, 18, 4672, 12, 945, 24
Offset: 1

Views

Author

Jaroslav Krizek, Nov 15 2019

Keywords

Comments

Sequences of numbers k such that k and k+n are both abundant for any n: A096399 (n = 1), A231086 (n = 2).

Examples

			Number 5775 is the smallest abundant number k such that k+1 = 5576 is also abundant.
		

Crossrefs

Programs

  • Magma
    [Min([m: m in[1..10^4] | SumOfDivisors(m) gt 2*m and SumOfDivisors(m+n) gt 2*(m+n)]): n in [1..60]];
    
  • PARI
    A329525(n) = for(k=1, oo, if((sigma(k) > (k+k)) && (sigma(n+k) > 2*(n+k)), return(k))); \\ Antti Karttunen, Nov 15 2019

A343303 Numbers in A231626 but not in A343302; first of 5 consecutive deficient numbers in arithmetic progression with common difference > 1.

Original entry on oeis.org

347, 1997, 2207, 2747, 2987, 2989, 3005, 3245, 3707, 3845, 4505, 4727, 4729, 5165, 6227, 7067, 7205, 7907, 8885, 9347, 9587, 9723, 9725, 11405, 13745, 14207, 14765, 17147, 17987, 18125, 18587, 18827, 18843, 18845, 19547, 20147, 20477, 21485, 22187, 22983, 22985
Offset: 1

Views

Author

Jianing Song, Apr 11 2021

Keywords

Comments

Numbers k such that k, k+d, k+2*d, k+3*d and k+4*d are consecutive deficient numbers with some d > 1. Such k with d = 1 are listed in A343302.
All known terms have d = 2. If some k is the start of 5 consecutive deficient numbers in arithmetic progression with common difference 3, then k+1, k+4, k+7 and k+10 must be 4 consecutive terms in A096399. This may happen, but each of such k has to be extremely large.
If k is an even term here, then none of k, k+d, k+2*d, k+3*d and k+4*d is divisible by 6, so d must be divisible by 3.
It seems that most terms are congruent to 5 modulo 6. The smallest term congruent to 1 modulo 6 is a(6) = 2989, and the smallest term congruent to 3 modulo 6 is a(22) = 9723.

Examples

			347 is here since it is the start of 5 consecutive deficient numbers in arithmetic progression with common difference 2, namely 347, 349, 351, 353 and 355. Indeed, all of 348, 350, 352 and 354 are abundant.
		

Crossrefs

Cf. A096399.
Set difference of A231626 by A343302.

Programs

  • Mathematica
    DefQ[n_] := DivisorSigma[1, n] < 2 n; m = 2; z1 = 2; cd = 1; a = {}; Do[If[DefQ[n], If[n - z1 == cd, m = m + 1; If[m > 4 && cd != 1, AppendTo[a, n - 4*cd]], m = 2; cd = n - z1]; z1 = n], {n, 3, 50000}]; a (* after the Mathematica program of A231626 *)

A349870 Numbers k such that k and k+1 are both nobly abundant numbers (A349758).

Original entry on oeis.org

735, 819, 1035, 1196, 1274, 1275, 1449, 1665, 1700, 1924, 1925, 1952, 1988, 2204, 2324, 2331, 2540, 2655, 2960, 2975, 3068, 3195, 3267, 3324, 3339, 3380, 3549, 3555, 3626, 3717, 4004, 4059, 4164, 4220, 4235, 4256, 4556, 4563, 4598, 4599, 4635, 4655, 4675, 4719
Offset: 1

Views

Author

Amiram Eldar, Dec 03 2021

Keywords

Examples

			735 is a term since 735 and 736 are both nobly abundant numbers: A000005(735) = A000005(736) = 12, A000203(735) = 1368 and A000203(736) = 1512 are all abundant numbers.
		

Crossrefs

Subsequence of A349758.

Programs

  • Mathematica
    abQ[n_] := DivisorSigma[1, n] > 2*n; nobAbQ[n_] := And @@ abQ /@ DivisorSigma[{0, 1}, n]; Select[Range[50000], nobAbQ[#] && nobAbQ[# + 1] &]

A364727 Numbers k such that k and k+1 are both admirable numbers (A111592).

Original entry on oeis.org

29691198404, 478012798575, 2789405835075, 22929723392715
Offset: 1

Views

Author

Amiram Eldar, Aug 05 2023

Keywords

Comments

a(1)-a(2) were found by Giovanni Resta.

Crossrefs

Subsequence of A096399 and A111592.

Extensions

a(4) from Martin Ehrenstein, Aug 06 2023
Previous Showing 21-30 of 42 results. Next