cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 45 results. Next

A229780 Decimal expansion of (3+sqrt(5))/10.

Original entry on oeis.org

5, 2, 3, 6, 0, 6, 7, 9, 7, 7, 4, 9, 9, 7, 8, 9, 6, 9, 6, 4, 0, 9, 1, 7, 3, 6, 6, 8, 7, 3, 1, 2, 7, 6, 2, 3, 5, 4, 4, 0, 6, 1, 8, 3, 5, 9, 6, 1, 1, 5, 2, 5, 7, 2, 4, 2, 7, 0, 8, 9, 7, 2, 4, 5, 4, 1, 0, 5, 2, 0, 9, 2, 5, 6, 3, 7, 8, 0, 4, 8, 9, 9, 4, 1, 4, 4, 1, 4, 4, 0, 8, 3, 7, 8, 7, 8, 2, 2, 7
Offset: 0

Views

Author

Joost Gielen, Sep 29 2013

Keywords

Comments

sqrt((3+sqrt(5))/10) = sqrt(phi^2/5) = (5+sqrt(5))/10 = (3+sqrt(5))/10 + 2/10 = 0.723606797... .
Essentially the same as A134972, A134945, A098317 and A002163. - R. J. Mathar, Sep 30 2013
Equals one tenth of the limit of (G(n+2)+G(n+1)+G(n-1)+G(n-2))/G(n), where G(n) is any nonzero sequence satisfying the recurrence G(n+1) = G(n) + G(n-1) including A000032 and A000045, as n --> infinity. - Richard R. Forberg, Nov 17 2014
3+sqrt(5) is the perimeter of a golden rectangle with a unit width. - Amiram Eldar, May 18 2021
Constant x such that x = sqrt(x) - 1/5. - Andrea Pinos, Jan 15 2024

Examples

			0.5236067977499...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[GoldenRatio^2/5,10,120][[1]] (* Harvey P. Dale, Dec 02 2014 *)

Formula

(3+sqrt(5))/10 = (phi/sqrt(5))^2 = phi^2/5 where phi is the golden ratio.

A261540 a(n) = n^7 + 7*n^5 + 14*n^3 + 7*n.

Original entry on oeis.org

0, 29, 478, 4287, 24476, 101785, 337434, 946043, 2333752, 5206581, 10714070, 20633239, 37597908, 65378417, 109216786, 176222355, 275832944, 420346573, 625528782, 911300591, 1302512140, 1829807049, 2530582538, 3450050347, 4642403496, 6172093925, 8115226054
Offset: 0

Views

Author

Raphael Ranna, Aug 24 2015

Keywords

Comments

Also numbers of the form (n-th metallic mean)^7 - 1/(n-th metallic mean)^7, see link to Wikipedia.

Crossrefs

Programs

  • Magma
    [n^7 + 7*n^5 + 14*n^3 + 7*n: n in [0..30]]; // Vincenzo Librandi, Aug 24 2015
    
  • Mathematica
    Table[n^7 + 7 n^5 + 14 n^3 + 7 n, {n, 0, 30}] (* Bruno Berselli, Aug 24 2015 *)
    LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 29, 478, 4287, 24476, 101785, 337434, 946043}, 30] (* Vincenzo Librandi, Aug 24 2015 *)
  • PARI
    a(n)=n^7+7*n^5+14*n^3+7*n \\ Charles R Greathouse IV, Aug 24 2015
  • Sage
    [n^7+7*n^5+14*n^3+7*n for n in (0..30)] # Bruno Berselli, Aug 24 2015
    

Formula

a(n) = -a(-n) = ( (n+sqrt(n^2+4))/2 )^7 - 1/( (n+sqrt(n^2+4))/2 )^7.
G.f.: x*(29 + 246*x + 1275*x^2 + 1940*x^3 + 1275*x^4 + 246*x^5 + 29*x^6)/(1 - x)^8. - Bruno Berselli, Aug 24 2015

Extensions

Offset changed from 1 to 0 and initial 0 added by Bruno Berselli, Aug 25 2015

A115605 Expansion of -x^2*(2 + x - 2*x^2 - x^3 + 2*x^4) / ( (x-1)*(1+x)*(1 + x + x^2)*(x^2 - x + 1)*(x^2 + 4*x - 1)*(x^2 - x - 1) ).

Original entry on oeis.org

0, 0, 2, 7, 31, 128, 549, 2315, 9826, 41594, 176242, 746496, 3162334, 13395658, 56745250, 240376201, 1018250793, 4313378176, 18271765435, 77400436781, 327873517634, 1388894499108, 5883451527348, 24922700587008
Offset: 0

Views

Author

Roger L. Bagula, Mar 13 2006

Keywords

Crossrefs

Programs

  • Maple
    A000035 := proc(n)
            n mod 2 ;
    end proc:
    A061347 := proc(n)
            op((n mod 3)+1,[-2,1,1]) ;
    end proc:
    A001076 := proc(n)
            option remember;
            if n <=1 then
                    n;
            else
                    4*procname(n-1)+procname(n-2) ;
            end if;
    end proc:
    A039834 := proc(n)
            (-1)^(n+1)*combinat[fibonacci](n) ;
    end proc:
    A087204 := proc(n)
            op((n mod 6)+1,[2,1,-1,-2,-1,1]) ;
    end proc:
    A115605 := proc(n)
            -A000035(n+1)/6 +A061347(n+2)/12 + A001076(n+1)/10 +3*A039834(n+1)/20 -A087204(n)/12 ;
    end proc: # R. J. Mathar, Dec 16 2011
  • Mathematica
    LinearRecurrence[{3,6,-3,-1,0,1,-3,-6,3,1},{0,0,2,7,31,128,549,2315,9826,41594},30] (* Harvey P. Dale, Dec 16 2011 *)
  • PARI
    concat([0,0],Vec((2+x-2*x^2-x^3+2*x^4)/((1-x)*(1+x)*(1+x+x^2)*(x^2-x+1)*(x^2+4*x-1)*(x^2-x-1))+O(x^99))) \\ Charles R Greathouse IV, Sep 27 2012

Formula

Lim_{n->infinity} a(n+1)/a(n) = phi^3 = A098317.
a(n) = -A000035(n+1)/6 +A061347(n+2)/12 +A001076(n+1)/10 +3*A039834(n+1)/20 -A087204(n)/12. - R. J. Mathar, Dec 16 2011

A205325 Decimal expansion of the limit of [0;1,1,...] + [0;2,2,...] + ... + [0;n,n,...] - log(n) as n approaches infinity.

Original entry on oeis.org

0, 4, 1, 6, 6, 6, 2, 6, 2, 7, 6, 3, 4, 8, 4, 8, 1, 0, 8, 7, 0, 1, 1, 6, 3, 5, 8, 5, 6, 9, 2, 3, 2, 0, 7, 4, 3, 1, 2, 5, 4, 5, 4, 6, 7, 5, 2, 8, 4, 1, 6, 3, 1, 8, 0, 9, 2, 0, 1, 3, 5, 9, 2, 3, 2, 9, 9, 1, 6, 4, 5, 7, 7, 5, 1, 2, 6, 2, 5, 5, 3, 7, 8, 3, 9, 5, 0, 3
Offset: 0

Views

Author

Martin Janecke, Jan 26 2012

Keywords

Examples

			0.0416662....
		

Crossrefs

Cf. A001620, A205326, continued fractions A001622, A014176, A098316, A098317, A098318.

Programs

  • Mathematica
    digits = 10; dn = 1000000; Clear[f]; f[n_] := NSum[2/(k + Sqrt[k^2+4]) - 1/k, {k, 1, Infinity}, NSumTerms -> 200000, WorkingPrecision -> digits+10, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 20}}] + EulerGamma // RealDigits[#, 10, digits+2]& // First; f[dn]; f[n = 2*dn]; While[f[n] != f[n-dn], n = n+dn]; Prepend[ f[n][[1 ;; digits]], 0] (* Jean-François Alcover, Feb 25 2013 *)

Formula

lim_{n->infinity} (1/[1;1,...] + 1/[2;2,...] + 1/[3;3,...] + ... + 1/[n;n,...] - log(n)).
lim_{n->infinity} (sum_{k=1...n} (2/(k + sqrt(k^2 + 4))) - log(n)).

Extensions

More terms from Jean-François Alcover, Feb 25 2013
More terms from Jon E. Schoenfield, Jan 05 2014

A205326 Decimal expansion of the sum of [0;n,n,n,...]^2 for n=1..infinity.

Original entry on oeis.org

9, 1, 5, 5, 8, 7, 9, 1, 9, 9, 0, 1, 8, 1, 9, 7, 2, 5, 1, 9, 9, 8, 1, 6, 8, 5, 3, 8, 0, 3, 1, 9, 0, 0, 8, 9, 7, 3, 5, 3, 2, 0, 4, 6, 0, 1, 8, 9, 6, 6, 9, 0, 2, 4, 1, 2, 2, 7, 6, 9, 5, 1, 7, 0, 9, 6, 2, 1, 8, 2, 7, 0, 5, 5, 6, 4, 6, 5, 3, 3, 5, 9, 7, 5, 5, 3, 7
Offset: 0

Views

Author

Martin Janecke, Jan 26 2012

Keywords

Comments

This is the total area of all squares with sides parallel to the axes of the Cartesian coordinate system, the lower left vertex at (n,0) and the upper right vertex on f(x)=1/x for n=1..infinity.

Examples

			0.9155879199018197251998168538031900897353...
		

Crossrefs

Cf. A013661, A205325, continued fractions A001622, A014176, A098316, A098317, A098318.

Programs

Formula

Sum_{n>=1} 1/[n;n,n,...]^2.
Sum_{n>=1} 4/(n + sqrt(n^2 + 4))^2.

Extensions

a(-5)-a(-86) from Charles R Greathouse IV, Jan 26 2012

A261574 a(n) = n*(n^2 + 3)*(n^6 + 6*n^4 + 9*n^2 + 3).

Original entry on oeis.org

0, 76, 2786, 46764, 439204, 2744420, 12813606, 48229636, 153992264, 432083484, 1092730090, 2537720636, 5489037036, 11179326964, 21624372014, 40001698260, 71163830416, 122319408236, 203920464114, 330799604044, 523606640180, 810600392196, 1229857906486
Offset: 0

Views

Author

Raphael Ranna, Aug 24 2015

Keywords

Comments

Also numbers of the form (n-th metallic mean)^9 - 1/(n-th metallic mean)^9, see link to Wikipedia.

Crossrefs

Programs

  • Magma
    [n*(n^2+3)*(n^6+6*n^4+9*n^2+3): n in [0..25]]; // Bruno Berselli, Aug 25 2015
  • Mathematica
    Table[n (n^2 + 3) (n^6 + 6 n^4 + 9 n^2 + 3), {n, 0, 25}] (* Bruno Berselli, Aug 25 2015 *)
  • PARI
    concat(0, Vec(2*x*(38*x^8 +1013*x^7 +11162*x^6 +43907*x^5 +69200*x^4 +43907*x^3 +11162*x^2 +1013*x +38) / (x -1)^10 + O(x^50))) \\ Colin Barker, Aug 25 2015
    

Formula

a(n) = -a(-n) = ( (n+sqrt(n^2+4))/2 )^9-1/( (n+sqrt(n^2+4))/2 )^9.
G.f.: 2*x*(38*x^8 +1013*x^7 +11162*x^6 +43907*x^5 +69200*x^4 +43907*x^3 +11162*x^2 +1013*x +38) / (x -1)^10. - Colin Barker, Aug 25 2015

Extensions

Formula in Name by Colin Barker, Aug 25 2015
Offset changed from 1 to 0 and initial 0 added by Bruno Berselli, Aug 25 2015

A300763 a(n) = ceiling(n/g^3), where g = (1+sqrt(5))/2 is the golden ratio.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18
Offset: 0

Views

Author

Jeffrey Shallit, Jul 02 2018

Keywords

Crossrefs

Cf. A001622, A019446, which is ceiling(n/g), A189663, which is ceiling(n/g^2) (but shifted by one).
Cf. A098317.

Programs

  • Mathematica
    Array[Ceiling[#/GoldenRatio^3] &, 90, 0] (* Robert G. Wilson v, Jul 02 2018 *)
  • PARI
    a(n) = my(t=2+sqrt(5)); ceil(n/t); \\ Altug Alkan, Jul 02 2018

Formula

a(n) = ceiling(n/t) where t = 2*g + 1 = 2 + sqrt(5). - Altug Alkan, Jul 02 2018

A305833 Triangle read by rows: T(0,0)=1; T(n,k) = 4*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 4, 16, 1, 64, 8, 256, 48, 1, 1024, 256, 12, 4096, 1280, 96, 1, 16384, 6144, 640, 16, 65536, 28672, 3840, 160, 1, 262144, 131072, 21504, 1280, 20, 1048576, 589824, 114688, 8960, 240, 1, 4194304, 2621440, 589824, 57344, 2240, 24, 16777216, 11534336, 2949120, 344064, 17920, 336, 1
Offset: 0

Views

Author

Shara Lalo, Jun 11 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013611 ((1+4*x)^n).
The coefficients in the expansion of 1/(1-4x-x^2) are given by the sequence generated by the row sums.
The row sums are A001076 (Denominators of continued fraction convergent to sqrt(5)).
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 4.236067977...; a metallic mean (see A098317), when n approaches infinity.

Examples

			Triangle begins:
         1;
         4;
        16,        1;
        64,        8;
       256,       48,        1;
      1024,      256,       12;
      4096,     1280,       96,       1;
     16384,     6144,      640,      16;
     65536,    28672,     3840,     160,      1;
    262144,   131072,    21504,    1280,     20;
   1048576,   589824,   114688,    8960,    240,    1;
   4194304,  2621440,   589824,   57344,   2240,   24;
  16777216, 11534336,  2949120,  344064,  17920,  336,  1;
  67108864, 50331648, 14417920, 1966080, 129024, 3584, 28;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 90, 373.

Crossrefs

Row sums give A001076.
Cf. A000302 (column 0), A002697 (column 1), A038845 (column 2), A038846 (column 3), A040075 (column 4).
Cf. A013611.
Cf. A098317.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 4 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten

Formula

G.f.: 1 / (1 - 4*t*x - t^2).

A354855 a(n) = floor(n*(2+sqrt(5))^n), equivalently, floor(n*phi^(3n)), where phi = (1+sqrt(5))/2 is the golden ratio.

Original entry on oeis.org

0, 4, 35, 228, 1287, 6820, 34667, 171332, 829455, 3952836, 18604979, 86693156, 400623383, 1838490212, 8387044091, 38065809540, 171999313951, 774138335108, 3472202765123, 15525625108324, 69229056160039, 307921937307684, 1366491508589195, 6051666872017348
Offset: 0

Views

Author

Jiale Wang, Jun 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Floor[n * GoldenRatio^(3*n)]; Array[a, 25, 0] (* Amiram Eldar, Jun 09 2022 *)

Formula

a(n) = floor((2+sqrt(5))^n*n).
a(n) = floor(n*phi^(3n)) where phi=(1+sqrt(5))/2 is the golden ratio.
a(n) = floor(n*F(3n-1)+n*phi*F(3n)), where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) = n*L(3n) when n is odd and a(n) = n*L(3n)-1 when n is even (n>=2), where L(n) = A000032(n) is the n-th Lucas number.
G.f.: x*(4 + 3*x - 18*x^3 - 4*x^4 - x^5)/((1 - x)*(1 + x)*(1 - 4*x - x^2)^2). - Stefano Spezia, Jun 12 2022

A382008 Decimal expansion of the isoperimetric quotient of a rhombic triacontahedron.

Original entry on oeis.org

8, 8, 7, 2, 0, 0, 0, 0, 2, 5, 4, 8, 0, 2, 0, 8, 5, 8, 0, 0, 5, 4, 4, 4, 0, 9, 3, 9, 8, 4, 2, 6, 0, 0, 3, 7, 8, 5, 7, 3, 8, 9, 8, 6, 5, 7, 2, 1, 1, 6, 0, 9, 3, 7, 4, 6, 2, 6, 4, 0, 6, 8, 0, 7, 2, 0, 5, 1, 8, 3, 1, 2, 8, 7, 9, 4, 4, 0, 4, 1, 3, 4, 9, 0, 6, 8, 0, 8, 0, 4
Offset: 0

Views

Author

Paolo Xausa, Mar 20 2025

Keywords

Comments

For the definition of isoperimetric quotient of a solid, references and links, see A381684.

Examples

			0.88720000254802085800544409398426003785738986572116...
		

Crossrefs

Cf. A344171 (surface area), A344172 (volume).

Programs

  • Mathematica
    First[RealDigits[Pi*(2 + Sqrt[5])/15, 10, 100]]

Formula

Equals 36*Pi*A344172^2/(A344171^3).
Equals Pi*(2 + sqrt(5))/15 = A000796*A098317/15.
Previous Showing 31-40 of 45 results. Next