cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A285702 a(n) = A000010(A064216(n)).

Original entry on oeis.org

1, 1, 2, 4, 2, 6, 10, 2, 12, 16, 4, 18, 6, 4, 22, 28, 6, 8, 30, 10, 36, 40, 4, 42, 20, 12, 46, 12, 16, 52, 58, 8, 20, 60, 18, 66, 70, 6, 24, 72, 8, 78, 24, 22, 82, 40, 28, 32, 88, 12, 96, 100, 8, 102, 106, 30, 108, 36, 20, 48, 42, 36, 18, 112, 40, 126, 64, 8, 130, 136, 42, 60, 44, 20, 138, 148, 24, 56, 150, 46, 72, 156, 12, 162, 110, 32, 166, 24, 52, 172, 178
Offset: 1

Views

Author

Antti Karttunen, Apr 26 2017

Keywords

Crossrefs

Odd bisection of the following sequences: A347115, A348045, A349127, A349128.

Programs

  • Mathematica
    Table[EulerPhi@ If[n == 1, 1, Apply[Times, FactorInteger[2 n - 1] /. {p_, e_} /; p > 2 :> NextPrime[p, -1]^e]], {n, 91}] (* Michael De Vlieger, Apr 26 2017 *)
  • Scheme
    (define (A285702 n) (A000010 (A064216 n)))

Formula

a(n) = A000010(A064216(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Product_{p prime} (p^3/((p+1)*(p^2-q(p)))) = 0.5366875995..., where q(p) = prevprime(p) (A151799) if p > 2 and q(2) = 1. - Amiram Eldar, Dec 21 2023

A359211 a(n) = tau(3*n-1)/2, where tau(n) = number of divisors of n, cf. A000005.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 2, 2, 1, 3, 1, 3, 1, 4, 1, 2, 2, 3, 1, 2, 2, 5, 1, 2, 1, 3, 2, 3, 1, 4, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 1, 6, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 1, 5, 1, 4, 2, 3, 1, 2, 1, 6, 2, 2, 2, 3, 2, 2, 2, 6, 1, 4, 1, 3, 1, 3, 3, 4, 1, 2, 1, 6, 1, 4, 1
Offset: 1

Views

Author

Seiichi Manyama, Dec 21 2022

Keywords

Comments

Also number of divisors of 3*n-1 of form 3*k+1 (or 3*k+2).

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, 3*n-1]/2; Array[a, 100] (* Amiram Eldar, Dec 21 2022 *)
  • PARI
    a(n) = numdiv(3*n-1)/2;
    
  • PARI
    a(n) = sumdiv(3*n-1, d, d%3==1);
    
  • PARI
    a(n) = sumdiv(3*n-1, d, d%3==2);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(3*k-1))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(3*k-2))))

Formula

G.f.: Sum_{k>0} x^k/(1 - x^(3*k-1)).
G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(3*k-2)).
Sum_{k=1..n} a(k) = (log(n) + 2*gamma - 1 + 2*log(3))*n/3 + O(n^(1/3)*log(n)), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 26 2022

A091304 a(n) = Omega(2n-1) (number of prime factors of the n-th odd number, counted with multiplicity).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 4, 1, 2, 2, 1, 2, 2, 2, 1, 3, 1, 1, 3, 1, 1, 2, 1, 2, 3, 2, 2, 2, 3, 1, 2, 1, 2, 4, 1, 1, 2, 2, 2, 3, 1, 1, 3, 2, 1, 2, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 1, 2, 2, 2, 4, 1, 1, 3, 1, 1, 2, 2, 2, 3, 2
Offset: 1

Views

Author

Andrew S. Plewe, Feb 20 2004

Keywords

Comments

Omega(n) of the odd integers follows a pattern similar to A001222, with 4 maxima instead of 2 - i.e. between 2^n and (2^(n+1) - 1) there are two numbers with exactly n factors (2^n and 2^(n-1) * 3) while the odd integers have 4 maxima (3^n, 3^(n-1) * 5, 3^(n-1) * 7, 5^2*3^(n-2)) between 3^n and 3^(n+1) - 1.

Examples

			Omega(1) = 0, Omega(9) = 2 (3 * 3 = 9), Omega (243) = 5 (3 * 3 * 3 * 3 * 3 = 243), Omega(51) = 2 (3 * 17 = 51).
For n = 92, A001222(2*92 - 1) = A001222(183) = 2 as 183 = 3*61, thus a(92) = 2. - _Antti Karttunen_, May 31 2017
		

Crossrefs

One more than A285716 (after the initial term).
Cf. A006254 (positions of ones).

Programs

  • Mathematica
    a[n_] := PrimeOmega[2*n - 1]; Array[a, 100] (* Amiram Eldar, Jul 23 2023 *)
  • PARI
    a(n) = bigomega(2*n-1) \\ Michel Marcus, Jul 26 2013, edited to reflect the changed starting offset by Antti Karttunen, May 31 2017

Formula

a(n) = Omega(2n-1). [Odd bisection of A001222.]
From Antti Karttunen, May 31 2017: (Start)
For n >= 1, a(n) = A000120(A244153(n)).
For n >= 2, a(n) = 1+A285716(n).
(End)

Extensions

Starting offset changed to 1 and the definition modified respectively. Also values of the initial term and of term a(92) (= 2, previously a(91) = 1) corrected by Antti Karttunen, May 31 2017

A228441 G.f.: Sum_{k>0} -(-x)^k / (1 + x^k).

Original entry on oeis.org

1, -2, 2, -1, 2, -4, 2, 0, 3, -4, 2, -2, 2, -4, 4, 1, 2, -6, 2, -2, 4, -4, 2, 0, 3, -4, 4, -2, 2, -8, 2, 2, 4, -4, 4, -3, 2, -4, 4, 0, 2, -8, 2, -2, 6, -4, 2, 2, 3, -6, 4, -2, 2, -8, 4, 0, 4, -4, 2, -4, 2, -4, 6, 3, 4, -8, 2, -2, 4, -8, 2, 0, 2, -4, 6, -2, 4
Offset: 1

Views

Author

Michael Somos, Nov 02 2013

Keywords

Examples

			G.f. = x - 2*x^2 + 2*x^3 - x^4 + 2*x^5 - 4*x^6 + 2*x^7 + 3*x^9 - 4*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Sum[ -(-x)^k / (1 + x^k), {k, 1, n}], {x, 0, n}];
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, (-1)^(# + n/#) &]]; (* Michael Somos, Jan 08 2015 *)
    a[n_] := Module[{e = IntegerExponent[n, 2]}, DivisorSigma[0, n] * If[e == 0, 1, (e-3)/(e+1)]]; Array[a, 100] (* Amiram Eldar, Sep 18 2023 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, k, (-1)^(k + n/k)))};
    
  • PARI
    {a(n) = if( n<1, 0, numdiv(n) - 4 * sumdiv( n, k, k%4 == 2))};
    
  • PARI
    {a(n) = my(e); if( n<1, 0, e = valuation( n, 2); numdiv( n/2^e) * if( e>0, e-3, 1))};
    
  • PARI
    a(n)=direuler(p=1,n,if(p==2,(1-2*X)^2/(1-X)^2,1/(1-X)^2))[n] /* Ralf Stephan, Mar 27 2015 */

Formula

a(n) = number of divisors of n minus 4 times number of divisors of n of the form 4*k+2.
a(n) = Sum_{d|n} (-1)^(d+n/d). - N. J. A. Sloane, Nov 23 2018
Multiplicative with a(2^e) = e-3 if e>0, a(p^e) = e+1 if p>2.
Moebius transform is period 4 sequence [1, -3, 1, 1, ...].
G.f.: Sum_{k>0} x^k / (1 - x^k) - 4 * x^(4*k + 2) / (1 - x^(4*k + 2)).
a(2*n - 1) = A099774(n).
Dirichlet g.f.: zeta(s)^2*(1-2^(-s+1))^2 = eta^2(s) (the Dirichlet eta). - Ralf Stephan, Mar 27 2015
a(16n+8) = a(A051062(n)) = 0. - Michel Marcus, Mar 27 2015
O.g.f.: Sum_{n >= 1} (-1)^(n*(n+1))*x^(n^2)*(1 - x^n)/(1 + x^n). - Peter Bala, Mar 11 2019
Conjecture: a(n) = (7 - 2*(-1)^n)*tau(n) - 4*tau(2*n) = 5*tau(n) - (3 + (-1)^n)*tau(2*n), where tau = A000005. - Velin Yanev, Dec 17 2019
The proof of the above conjecture easily follows from the fact that both a(n) and tau(n) are multiplicative arithmetical functions and tau(p^e) = e + 1 for prime p. - Peter Bala, Jan 28 2022
a(n) = A000005(n) if n is odd, and A000005(n) * (A007814(n)-3)/(A007814(n)+1) if n is even. - Amiram Eldar, Sep 18 2023

A076984 Number of Fibonacci numbers that are divisors of the n-th Fibonacci number.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 2, 3, 3, 3, 2, 5, 2, 3, 4, 4, 2, 5, 2, 5, 4, 3, 2, 7, 3, 3, 4, 5, 2, 7, 2, 5, 4, 3, 4, 8, 2, 3, 4, 7, 2, 7, 2, 5, 6, 3, 2, 9, 3, 5, 4, 5, 2, 7, 4, 7, 4, 3, 2, 11, 2, 3, 6, 6, 4, 7, 2, 5, 4, 7, 2, 11, 2, 3, 6, 5, 4, 7, 2, 9, 5, 3, 2, 11, 4, 3, 4, 7, 2, 11, 4, 5, 4, 3, 4, 11, 2, 5, 6, 8, 2, 7, 2
Offset: 1

Views

Author

Amarnath Murthy, Oct 25 2002

Keywords

Comments

a(A001605(n)) = 2; a(A105802(n)) = n.
It is well known that if k is a divisor of n then F(k) divides F(n). Hence if n has d divisors, one expects that a(n)=d. However because F(1)=F(2)=1, there is one fewer Fibonacci divisor when n is even. So for even n, a(n)=d-1. - T. D. Noe, Jan 18 2006

Examples

			n=12, A000045(12)=144: 5 of the 15 divisors of 144 are also Fibonacci numbers, a(12) = #{1, 2, 3, 8, 144} = 5.
		

Crossrefs

Programs

  • Maple
    with(combinat, fibonacci):a[1] := 1:for i from 2 to 229 do s := 0:for j from 2 to i do if((fibonacci(i) mod fibonacci(j))=0) then s := s+1:fi:od:a[i] := s:od:seq(a[l],l=2..229);
  • Mathematica
    Table[s=DivisorSigma[0, n]; If[OddQ[n], s, s-1], {n, 100}] (Noe)
  • PARI
    {a(n)=if(n<1, 0, numdiv(n)+n%2-1)} /* Michael Somos, Sep 03 2006 */
    
  • PARI
    {a(n)=if(n<1, 0, sumdiv(n,d, d!=2))} /* Michael Somos, Sep 03 2006 */

Formula

a(n) = A023645(n) + 1. - T. D. Noe, Jan 18 2006
a(n) = tau(n) - [n is even] = A000005(n) - A059841(n). Proof: gcd(Fib(m), Fib(n)) = Fib(gcd(m, n)) and Fib(2) = 1. - Olivier Wittenberg, following a conjecture of Ralf Stephan, Sep 28 2004
The number of divisors of n excluding 2.
a(2n) = A066660(n). a(2n-1) = A099774(n). - Michael Somos, Sep 03 2006
a(3*2^(Prime(n-1)-1)) = 2n + 1 for n > 3. a(3*2^A068499[n]) = 2n + 1, where A068499(n) = {1,2,3,4,6,10,12,16,18,...}. - Alexander Adamchuk, Sep 15 2006

Extensions

Corrected and extended by Sascha Kurz, Jan 26 2003
Edited by N. J. A. Sloane, Sep 14 2006. Some of the comments and formulas may need to be adjusted to reflect the new offset.

A285703 a(n) = A000203(A064216(n)).

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 12, 12, 14, 18, 18, 20, 13, 15, 24, 30, 24, 24, 32, 36, 38, 42, 28, 44, 31, 42, 48, 32, 54, 54, 60, 42, 48, 62, 60, 68, 72, 39, 48, 74, 31, 80, 56, 72, 84, 72, 90, 72, 90, 56, 98, 102, 72, 104, 108, 96, 110, 80, 84, 84, 57, 114, 40, 114, 126, 128, 108, 60, 132, 138, 132, 96, 96, 93, 140, 150, 98, 120, 152, 144, 120, 158, 96, 164, 133, 126
Offset: 1

Views

Author

Antti Karttunen, Apr 26 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, #] &@ If[n == 1, 1, Apply[Times, FactorInteger[2 n - 1] /. {p_, e_} /; p > 2 :> NextPrime[p, -1]^e]], {n, 86}] (* Michael De Vlieger, Apr 26 2017 *)
  • Scheme
    (define (A285703 n) (A000203 (A064216 n)))

Formula

a(n) = A000203(A064216(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Product_{p prime} (p^3/((p+1)*(p^2-q(p)))) = 0.8168476756..., where q(p) = prevprime(p) (A151799) if p > 2 and q(2) = 1. - Amiram Eldar, Dec 21 2023

A318734 a(n) = Sum_{k=1..n} (-1)^(k + 1) * d(2*k - 1), where d(k) is the number of divisors of k (A000005).

Original entry on oeis.org

1, -1, 1, -1, 2, 0, 2, -2, 0, -2, 2, 0, 3, -1, 1, -1, 3, -1, 1, -3, -1, -3, 3, 1, 4, 0, 2, -2, 2, 0, 2, -4, 0, -2, 2, 0, 2, -4, 0, -2, 3, 1, 5, 1, 3, -1, 3, -1, 1, -5, -3, -5, 3, 1, 3, -1, 1, -3, 3, -1, 2, -2, 2, 0, 4, 2, 6, -2, 0, -2, 2, -2
Offset: 1

Views

Author

Hugo Pfoertner, Sep 05 2018

Keywords

Crossrefs

Records and their positions: A318735, A318736, A318737, A318738.

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(k + 1) DivisorSigma[0, 2 k - 1], {k, 1, n}];
    Array[a, 100] (* Jean-François Alcover, Sep 17 2018 *)
  • PARI
    s=0;j=-1;forstep(k=1,141,2,j=-j;s=s+j*numdiv(k);print1(s,", "))
    
  • PARI
    a(n) = sum(k=1, n, (-1)^(k+1)*numdiv(2*k-1)); \\ Michel Marcus, Sep 08 2018

A318735 Positive records in A318734.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 21, 23, 25, 30, 31, 32, 34, 39, 45, 47, 48, 51, 52, 56, 60, 62, 71, 76, 78, 83, 84, 88, 91, 103, 108, 119, 127, 129, 132, 142, 143, 151, 166, 168, 171, 178, 181, 183, 189, 197, 215, 237, 241, 244, 266, 270, 274
Offset: 1

Views

Author

Hugo Pfoertner, Sep 05 2018

Keywords

Crossrefs

Programs

  • PARI
    s=0;smax=0;j=-1;forstep(k=1,20000000,2,j=-j;s=s+j*numdiv(k);if(s>smax,smax=s;print1(s,", ")))

A318736 Absolute value of negative records in A318734.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 19, 21, 22, 23, 25, 30, 32, 36, 40, 42, 44, 46, 50, 53, 55, 56, 57, 59, 65, 67, 69, 73, 79, 87, 96, 98, 100, 104, 108, 110, 113, 115, 118, 122, 126, 134, 139, 151, 161, 167, 169, 172, 178, 180, 182
Offset: 1

Views

Author

Hugo Pfoertner, Sep 05 2018

Keywords

Comments

1

Crossrefs

Programs

  • PARI
    s=0;j=-1;smin=0;forstep(k=1,5000000,2,j=-j;s=s+j*numdiv(k);if(s
    				

A318737 Numbers n=2*k-1 where Sum_{j=1..k} (-1)^(j+1) * d(2*j-1) achieves a new record, with d(n) = number of divisors of n (A000005).

Original entry on oeis.org

1, 9, 25, 49, 85, 133, 169, 225, 445, 845, 973, 1125, 2205, 2209, 2469, 2829, 7929, 9429, 9945, 23569, 24073, 24645, 26145, 40425, 68153, 71289, 72413, 89517, 112233, 112245, 128973, 162405, 162409, 162429, 297073, 477489, 477493, 502713, 561253
Offset: 1

Views

Author

Hugo Pfoertner, Sep 05 2018

Keywords

Examples

			a(2) = 9, because s = d(1)-d(3)+d(5)-d(7)+d(9) = 1-2+2-2+3 = 2 exceeds d(1)=1, d(1)-d(3)=-1, d(1)-d(3)+d(5)=1, d(1)-d(3)+d(5)-d(7)=-1.
		

Crossrefs

Programs

  • PARI
    s=0;smax=0;j=-1;forstep(k=1,600000,2,j=-j;s=s+j*numdiv(k);if(s>smax,smax=s;print1(k,", ")))
Previous Showing 11-20 of 39 results. Next