cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A320773 Numbers (excluding squares) whose square root has a continued fraction with a period < 3.

Original entry on oeis.org

2, 3, 5, 6, 8, 10, 11, 12, 15, 17, 18, 20, 24, 26, 27, 30, 35, 37, 38, 39, 40, 42, 48, 50, 51, 56, 63, 65, 66, 68, 72, 80, 82, 83, 84, 87, 90, 99, 101, 102, 104, 105, 110, 120, 122, 123, 132, 143, 145, 146, 147, 148, 150, 152, 156, 168, 170, 171, 182, 195, 197, 198, 200
Offset: 1

Views

Author

Paul Weisenhorn, Oct 21 2018

Keywords

Comments

The Heron sequence of every number a(n) has the following relationship: numerator(h(k))^2 - a(n)*denominator(h(k))^2 = 1 for k > 1.
The Heron sequence of every number a(n) has the following relationship with the continued fraction f(s) convergent to sqrt(a(n)): h(k) = f(2^k-1).
From Gerhard Kirchner, Jan 17 2020: (Start)
Numbers k = m^2 + r with m > 0 and 0 < r <= 2m such that r is a divisor of 2m.
Continued fraction: k = [m; 2m/r, 2m, 2m/r, 2m, ...].
The number of terms that are between m^2 and (m+1)^2 is equal to the number of divisors of 2m, which is A099777(m).
Proof see link. The Maxima code below demonstrates the divisor property. Note that there is no divisor of 2m between m and 2m.
(End)

Examples

			The continued fraction of sqrt(6) = 2 + 1/(2 + 1/(4 + 1/(2 + 1/(4 + 1/(2 + 1/(4 + ...)))))) = [2; 2, 4, 2, 4, 2, 4, ...] has repeating portion (2, 4) with period 2, so 6 is a term.
		

Programs

  • Maple
    Digits:=40: nr:=0:
    for z from 2 to 200 do
      test:=true: c:=sqrt(z):
      if (c=floor(c)) the test:=false: end if:
      while (test=true) do
        b[0]:=floor(c):
        r[0]:=c:
        for k from 1 to 2 do
          r[k]:=evalf(1/(r[k-1]-b[k-1])):
          b[k]:=floor(r[k]):
        end do:
        if (b[1]=2*b[0]) or (b[2]=2*b[0]) then nr:=nr+1: a[nr]:=z: printf("%4d",z): end if:
        test:=false:
      end do:
    end do:
  • Mathematica
    Select[Range[200], !IntegerQ[Sqrt[#]] && Length@ContinuedFraction[Sqrt[#]][[-1]]<3 &] (* Amiram Eldar, Nov 01 2018 *)
  • Maxima
    block([n: 2, m: 0, r: 0, k: 0, kmax: 10,v: ""],
      while kGerhard Kirchner, Jan 17 2020 */

Extensions

Edited by Jon E. Schoenfield, Oct 19 2019

A372714 a(n) = tau(3*n-1) = A000005(3*n-1).

Original entry on oeis.org

2, 2, 4, 2, 4, 2, 6, 2, 4, 2, 6, 4, 4, 2, 6, 2, 6, 2, 8, 2, 4, 4, 6, 2, 4, 4, 10, 2, 4, 2, 6, 4, 6, 2, 8, 2, 8, 2, 6, 4, 4, 4, 8, 2, 4, 2, 12, 4, 4, 2, 8, 4, 4, 4, 6, 2, 8, 2, 10, 2, 8, 4, 6, 2, 4, 2, 12, 4, 4, 4, 6, 4, 4, 4, 12, 2, 8, 2, 6, 2, 6, 6, 8, 2, 4, 2
Offset: 1

Views

Author

Vaclav Kotesovec, May 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 3*n-1], {n, 1, 150}]

Formula

Sum_{k=1..n} a(k) ~ 2*n * (log(n) + 2*gamma - 1 + 2*log(3)) / 3, where gamma is the Euler-Mascheroni constant A001620.

A372715 a(n) = tau(3*n-2) = A000005(3*n-2).

Original entry on oeis.org

1, 3, 2, 4, 2, 5, 2, 4, 3, 6, 2, 4, 2, 8, 2, 4, 3, 6, 4, 4, 2, 7, 2, 8, 2, 6, 2, 4, 4, 8, 4, 4, 2, 9, 2, 4, 2, 10, 4, 4, 3, 6, 2, 8, 4, 8, 2, 4, 4, 6, 2, 8, 2, 12, 2, 4, 3, 6, 6, 4, 2, 8, 4, 8, 2, 9, 2, 4, 4, 10, 2, 4, 4, 12, 2, 4, 2, 8, 4, 8, 2, 6, 4, 8, 4, 9
Offset: 1

Views

Author

Vaclav Kotesovec, May 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 3*n-2], {n, 1, 150}]

Formula

Sum_{k=1..n} a(k) ~ 2*n * (log(n) + 2*gamma - 1 + 2*log(3)) / 3, where gamma is the Euler-Mascheroni constant A001620.

A337566 a(n) is the number of possible decompositions of the polynomial n * (x + x^2 + ... + x^q), where q > 1, into a sum of k polynomials, not necessarily all different; each of these polynomials is to be of the form b_1 * x + b_2 * x^2 + ... + b_q * x^q where each b_i is one of the numbers 1, 2, 3, ..., q and no two b_i are equal.

Original entry on oeis.org

0, 0, 1, 1, 1, 3, 1, 2, 3, 3, 1, 5, 1, 3, 5, 3, 1, 6, 1, 5, 5, 3, 1, 7, 3, 3, 5, 5, 1, 9, 1, 4, 5, 3, 5, 9, 1, 3, 5, 7, 1, 9, 1, 5, 9, 3, 1, 9, 3, 6, 5, 5, 1, 9, 5, 7, 5, 3, 1, 13, 1, 3, 9, 5, 5, 9, 1, 5, 5, 9, 1, 12, 1, 3, 9, 5, 5, 9, 1, 9, 7, 3, 1, 13, 5, 3, 5, 7, 1, 15, 5, 5
Offset: 1

Views

Author

Bernard Schott, Sep 01 2020

Keywords

Comments

Inspired by the 6th problem of the 13th British Mathematical Olympiad in 1977 (see the link BMO) where the problem asked to find for n = 26 all the values of q for which this decomposition is possible (see 2nd example).
As mentioned by Tony Gardiner in his book (see reference), "the wording" of this problem "is very strange". Letter n in Olympiad exercise becomes q in the Name.
If a solution is the sum of k polynomials of degree q, then, the relation between (n,k,q) is: k*(q+1) = 2*n with q > 1 (as in the problem) and q < n (because one proves there is no solution when q >= n); then, a(n) is the number of pairs (k,q) that are solutions of this last relation.

Examples

			For n = 3, the only solution, that corresponds to q = 2 and k = 2, is:
    3 * (x + x^2) = (x + 2x^2) + (2x + x^2).
For n = 26 as in the British Olympiad problem, a(26) = 3, and these three possible decompositions are:
   for k = 2, q = 25:
     26 * (x +   x^2 +   x^3 + ... +   x^24 +   x^25) =
          (x +  2x^2 +  3x^3 + ... + 24x^24 + 25x^25) +
        (25x + 24x^2 + 23x^3 + ... +  2x^24 +   x^25);
   for k = 4, q = 12:
     26 * (x +   x^2 +   x^3 + ... +   x^11 +   x^12) =
          (x +  2x^2 +  3x^3 + ... + 11x^11 + 12x^12) +
        (12x + 11x^2 + 10x^3 + ... +  2x^11 +   x^12) +
          (x +  2x^2 +  3x^3 + ... + 11x^11 + 12x^12) +
        (12x + 11x^2 + 10x^3 + ... +  2x^11 +   x^12);
   for  k = 13, q = 3:
      26 *  (x +  x^2 +  x^3) =
       4 *  (x + 2x^2 + 3x^3) +
       4 * (2x + 3x^2 +  x^3) +
       3 * (3x +  x^2 + 2x^3) +
           (2x +  x^2 + 3x^3) +
           (3x + 2x^2 +  x^3).
		

References

  • A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Problem 6 pp. 212-213 (1977).

Crossrefs

Programs

  • Maple
    with(numtheory):
    Data:= 0, seq(tau(2*n)-3, n=2..150);
  • Mathematica
    MapAt[# + 1 &, Array[DivisorSigma[0, 2 #] - 3 &, 92], 1] (* Michael De Vlieger, Dec 12 2021 *)
  • PARI
    a(n) = if (n==1, 0, numdiv(2*n)-3); \\ Michel Marcus, Sep 06 2020

Formula

a(1) = 0 then, for n >= 2, a(n) = tau(2n) - 3 = A099777(n) - 3.
a(n) = 1 iff n = 4 or n = p odd prime (A065091).
a(n) = p-3, p odd prime > 3 iff n = 2^(p-2).

A349693 Dirichlet convolution of the ruler function (A001511) with itself.

Original entry on oeis.org

1, 4, 2, 10, 2, 8, 2, 20, 3, 8, 2, 20, 2, 8, 4, 35, 2, 12, 2, 20, 4, 8, 2, 40, 3, 8, 4, 20, 2, 16, 2, 56, 4, 8, 4, 30, 2, 8, 4, 40, 2, 16, 2, 20, 6, 8, 2, 70, 3, 12, 4, 20, 2, 16, 4, 40, 4, 8, 2, 40, 2, 8, 6, 84, 4, 16, 2, 20, 4, 16, 2, 60, 2, 8, 6, 20, 4, 16, 2, 70
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 25 2021

Keywords

Comments

Dirichlet convolution of A000005 with A104117. - Ridouane Oudra, Jul 23 2025

Crossrefs

Programs

  • Maple
    a:= n-> (f-> add(f(d)*f(n/d), d=numtheory[divisors](n)))(k-> padic[ordp](2*k, 2)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Nov 25 2021
  • Mathematica
    Table[Sum[IntegerExponent[2 d, 2] IntegerExponent[2 n/d, 2], {d, Divisors[n]}], {n, 1, 80}]
    f[p_, e_] := If[p == 2, Binomial[e + 3, 3], e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 80] (* Amiram Eldar, Nov 25 2021 *)
  • PARI
    A001511(n) = (1+valuation(n,2));
    A349693(n) = sumdiv(n,d,A001511(n/d)*A001511(d)); \\ Antti Karttunen, Nov 25 2021
    
  • Python
    from sympy import divisor_count
    def A349693(n): return divisor_count(n)*(m:=(n&-n).bit_length()+1)*(m+1)//6 # Chai Wah Wu, Jul 13 2022

Formula

Dirichlet g.f.: zeta(s)^2 * 4^s / (2^s-1)^2.
a(n) = Sum_{d|n} A001511(d) * A001511(n/d).
a(n) = Sum_{d|n} A000217(A001511(d)).
Multiplicative with a(p^e) = binomial(e+3,3) if p = 2 and e+1 otherwise. - Amiram Eldar, Nov 25 2021
Sum_{k=1..n} a(k) ~ 4*n*(log(n) - 1 + 2*gamma - 2*log(2)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Nov 26 2021
From Ridouane Oudra, Jul 23 2025: (Start)
a(n) = Sum_{i=0..A007814(n)} (i+1)*tau(n/2^i).
a(n) = Sum_{d|n} A115364(d).
a(n) = (1/6)*A090739(n)*A085058(n-1)*A000005(n).
a(n) = (1/6)*A001511(n)*A090739(n)*A099777(n).
a(n) = (1/3)*A115364(n)*A372784(n).
a(n) = A001227(n)*A000292(A001511(n)).
a(2*n+1) = tau(2*n+1).
a(2^k*(2*n+1)) = binomial(k+3, 3)*tau(2*n+1), for k, n >= 0. (End)

A355750 Sum of the divisors of 2n minus the number of divisors of 2n.

Original entry on oeis.org

1, 4, 8, 11, 14, 22, 20, 26, 33, 36, 32, 52, 38, 50, 64, 57, 50, 82, 56, 82, 88, 78, 68, 114, 87, 92, 112, 112, 86, 156, 92, 120, 136, 120, 136, 183, 110, 134, 160, 176, 122, 212, 128, 172, 222, 162, 140, 240, 165, 208, 208, 202, 158, 268, 208, 238, 232, 204, 176, 344, 182
Offset: 1

Views

Author

Wesley Ivan Hurt, Jul 15 2022

Keywords

Comments

Consider the partitions of 2n into 2 parts (s,t), where s <= t. a(n) gives the sum of all the quotients t/s such that t/s is an integer. (See example.)

Examples

			a(7) = 20; the partitions of 2*7 = 14 into two parts (s,t) where s <= t are: (1,13), (2,12), (3,11), (4,10), (5,9), (6,8), and (7,7). The sum of the quotients t/s such that each t/s is an integer is then: 13/1 + 12/2 + 7/7 = 13 + 6 + 1 = 20.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A062731, A099777.
Bisection of A065608.

Programs

  • Mathematica
    Table[DivisorSigma[1, 2 n] - DivisorSigma[0, 2 n], {n, 80}]
  • PARI
    a(n) = my(f=factor(2*n)); sigma(f) - numdiv(f); \\ Michel Marcus, Jul 16 2022

Formula

a(n) = sigma(2n) - tau(2n).
a(n) = Sum_{d|2n} (2n-d)/d.
a(n) = A065608(2n) = A000203(2n) - A000005(2n).
a(n) = A062731(n) - A099777(n).
a(n) = Sum_{k=1..n} m*c(m), where m=(2n-k)/k and c(m)=1-ceiling(m)+floor(m).

A334767 a(n) = Product_{k=1..n} d(2*k), where d() is the number of divisors function A000005.

Original entry on oeis.org

2, 6, 24, 96, 384, 2304, 9216, 46080, 276480, 1658880, 6635520, 53084160, 212336640, 1274019840, 10192158720, 61152952320, 244611809280, 2201506283520, 8806025134080, 70448201072640, 563585608581120, 3381513651486720, 13526054605946880
Offset: 1

Views

Author

Ctibor O. Zizka, May 10 2020

Keywords

Examples

			a(4) = d(2)*d(4)*d(6)*d(8) = 2*3*4*4 = 96.
		

Crossrefs

Programs

  • Mathematica
    Rest @ FoldList[Times, 1, DivisorSigma[0, Range[2, 40, 2]]] (* Amiram Eldar, May 10 2020 *)
  • PARI
    a(n) = prod(k=1, n, numdiv(2*k)); \\ Michel Marcus, May 10 2020

A348554 Irregular triangle read by rows: row n gives the divisors d of 2*n with 1 < d < 2*n, for n >= 2.

Original entry on oeis.org

2, 2, 3, 2, 4, 2, 5, 2, 3, 4, 6, 2, 7, 2, 4, 8, 2, 3, 6, 9, 2, 4, 5, 10, 2, 11, 2, 3, 4, 6, 8, 12, 2, 13, 2, 4, 7, 14, 2, 3, 5, 6, 10, 15, 2, 4, 8, 16, 2, 17, 2, 3, 4, 6, 9, 12, 18, 2, 19, 2, 4, 5, 8, 10, 20, 2, 3, 6, 7, 14, 21, 2, 4, 11, 22, 2, 23, 2, 3, 4, 6, 8, 12, 16, 24, 2, 5, 10, 25
Offset: 2

Views

Author

Wolfdieter Lang, Oct 22 2021

Keywords

Comments

This gives the rows 2*n of A137510, for n >= 2.
The length of row n is A069930(n) = tau(2*n) - 2 = A099777(n) - 2.
The sum of row n is A346880(n) = A062731(n) - (2*n + 1).

Examples

			The irregular triangle T(n, k) begins:
n, 2*n / k 1  2  3  4  5  6  7 ...
----------------------------------
2,   4:    2
3,   6:    2  3
4,   8:    2  4
5,  10:    2  5
6   12:    2  3  4 6
7,  14:    2  7
8,  16:    2  4  8
9,  18:    2  3  6  9
10, 20:    2  4  5 10
11, 22:    2 11
12, 24:    2  3  4  6  8 12
13, 26:    2 13
14, 28:    2  4  7 14
15, 30:    2  3  5  6 10 15
16, 32:    2  4  8  1
17, 34:    2 17
18, 36:    2  3  4  6  9 12 18
19, 38:    2 19
20, 40:    2  4  5  8 10 20
...
		

Crossrefs

Programs

  • Mathematica
    Flatten@Table[Select[Divisors[2n],1<#<2n&],{n,2,25}] (* Giorgos Kalogeropoulos, Oct 22 2021 *)
  • PARI
    row(n) = select(x->((x>1) && (x<2*n)), divisors(2*n)); \\ Michel Marcus, Oct 23 2021

Formula

T(n, k) = A137510(2*n, k), for n >= 2 and k = 1, 2, ..., A069930(n).

A350159 Number of subgroups of the dicyclic group Dic_n.

Original entry on oeis.org

3, 6, 8, 11, 10, 18, 12, 20, 19, 24, 16, 36, 18, 30, 32, 37, 22, 48, 24, 50, 40, 42, 28, 70, 37, 48, 48, 64, 34, 84, 36, 70, 56, 60, 56, 103, 42, 66, 64, 100, 46, 108, 48, 92, 90, 78, 52, 136, 63, 102, 80, 106, 58, 132, 80, 130, 88, 96, 64, 184, 66, 102, 116
Offset: 1

Views

Author

Firdous Ahmad Mala, Dec 17 2021

Keywords

Examples

			a(2) = A000005(4) + A000203(2) = 3+3 = 6.
Given the fact that Dic_2 is isomorphic to the quaternion group Q_8, the subgroups of Dic_2 are isomorphic to the subgroups of Q_8 which are {1}, {1,-1}, {1,i,-1,-i}, {1,j,-1,-j}, {1,k,-1,-k} and Q_8.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, 2*n] + DivisorSigma[1, n]; Array[a, 50] (* Amiram Eldar, Dec 17 2021 *)
  • PARI
    a(n) = numdiv(2*n) + sigma(n); \\ Michel Marcus, Dec 18 2021

Formula

a(n) = A000005(2n) + A000203(n) = A099777(n) + A000203(n).

A372793 Sequence related to the asymptotic expansion of Sum_{k=1..n} tau(m*k).

Original entry on oeis.org

1, 2, 3, 16, 5, 864, 7, 4096, 729, 64000, 11, 6879707136, 13, 2809856, 61509375, 4294967296, 17, 812479653347328, 19, 26843545600000000, 26795786661, 2791309312, 23, 4019988717840603673710821376, 9765625, 73719087104, 7625597484987, 25962355635465062711296, 29
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2024

Keywords

Comments

For m>=1, Sum_{k=1..n} tau(m*k) = A018804(m) * n * log(n) + O(n).
If p is prime, then Sum_{k=1..n} tau(p*k) ~ (2*p - 1) * n * (log(n) - 1 + 2*gamma)/p + n*log(p)/p, where gamma is the Euler-Mascheroni constant A001620.

Examples

			Sum_{k=1..n} tau(4*k) ~ (8*n*(log(n) + 2*gamma - 1) + n*4*log(2)) / 4, a(4) = exp(4*log(2)) = 16.
Sum_{k=1..n} tau(6*k) ~ (15*n*(log(n) + 2*gamma - 1) + n*(5*log(2) + 3*log(3))) / 6, a(6) = exp(5*log(2) + 3*log(3)) = 864.
Sum_{k=1..n} tau(8*k) ~ (20*n*(log(n) + 2*gamma - 1) + n*12*log(2)) / 8, a(8) = exp(12*log(2)) = 4096.
Sum_{k=1..n} tau(9*k) ~ (21*n*(log(n) + 2*gamma - 1) + n*6*log(3)) / 9, a(9) = exp(6*log(3)) = 729.
Sum_{k=1..n} tau(10*k) ~ (27*n*(log(n) + 2*gamma - 1) + n*(9*log(2) + 3*log(5))) / 10, a(10) = exp(9*log(2) + 3*log(5)) = 64000.
Sum_{k=1..n} tau(12*k) ~ (40*n*(log(n) + 2*gamma - 1) + n*(20*log(2) + 8*log(3))) / 12, a(12) = exp(20*log(2) + 8*log(3)) = 6879707136.
		

Crossrefs

Cf. A000005 (m=1), A099777 (m=2), A372713 (m=3), A372784 (m=4), A372785 (m=5), A372786 (m=6), A372787 (m=7), A372788 (m=8), A372789 (m=9), A372790 (m=10), A372791 (m=11), A372792 (m=12).

Formula

Sum_{k=1..n} tau(m*k) ~ A018804(m) * n * (log(n) - 1 + 2*gamma)/m + n*log(a(m))/m.
a(m) = exp(limit_{n->oo} (m * (Sum_{k=1..n} tau(m*k)) - A018804(m)*n*(log(n) - 1 + 2*gamma))/n).
If p is prime, then a(p) = p.
If p is prime, then a(p^k) = p^(k*p^(k-1)).
If p and q are distinct primes, then a(p*q) = p^(2*q-1) * q^(2*p-1).
Previous Showing 21-30 of 31 results. Next