cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 60 results.

A049678 a(n) = F(8*n+4)/3, where F=A000045 (the Fibonacci sequence).

Original entry on oeis.org

1, 48, 2255, 105937, 4976784, 233802911, 10983760033, 516002918640, 24241153416047, 1138818207635569, 53500214605455696, 2513371268248782143, 118074949393087305025, 5547009250206854554032, 260591359810329076734479, 12242246901835259751966481
Offset: 0

Views

Author

Keywords

Examples

			a(2) = F(8 * 2 + 4) / 3 = F(20) / 3 = 6765 / 3 = 2255. - _Indranil Ghosh_, Feb 04 2017
		

Crossrefs

Programs

  • Magma
    [Fibonacci(8*n+4)/3: n in [0..30]]; // G. C. Greubel, Dec 02 2017
  • Mathematica
    CoefficientList[Series[(1+x)/(1-47x+x^2),{x,0,20}],x]  (* Harvey P. Dale, Feb 18 2011 *)
    Table[Fibonacci[8*n+4]/3, {n,0,30}] (* G. C. Greubel, Dec 02 2017 *)
  • PARI
    for(n=0,30, print1(fibonacci(8*n+4)/3, ", ")) \\ G. C. Greubel, Dec 02 2017
    

Formula

a(n) = 47*a(n-1) - a(n-2), n>1. a(0)=1, a(1)=48.
G.f.: (1+x)/(1-47*x+x^2).
From Peter Bala, Mar 23 2015: (Start)
a(n) = A004187(2*n + 1); a(n) = A099483(4*n + 1).
a(n) = ( Fibonacci(8*n + 8 - 2*k) + Fibonacci(8*n + 2*k) )/( Fibonacci(8 - 2*k) + Fibonacci(2*k) ), for k an arbitrary integer.
a(n) = ( Fibonacci(8*n + 8 - 2*k - 1) - Fibonacci(8*n + 2*k + 1) )/( Fibonacci(8 - 2*k - 1) - Fibonacci(2*k + 1) ), for k an arbitrary integer.
The aerated sequence (b(n))n>=1 = [1, 0, 48, 0, 2255, 0, 105937, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -45, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials. (End)

Extensions

Better description and more terms from Michael Somos
2 more terms from Indranil Ghosh, Feb 04 2017

A161498 Expansion of x*(1-x)*(1+x)/(1-13*x+36*x^2-13*x^3+x^4).

Original entry on oeis.org

1, 13, 132, 1261, 11809, 109824, 1018849, 9443629, 87504516, 810723277, 7510988353, 69584925696, 644660351425, 5972359368781, 55329992188548, 512595960817837, 4748863783286881, 43995092132369664, 407585519020921249
Offset: 1

Views

Author

R. J. Mathar, Jun 11 2009

Keywords

Comments

Proposed by R. Guy in the seqfan list, Mar 29 2009.
The sequence is the case P1 = 13, P2 = 34, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 03 2014

Crossrefs

Programs

  • Magma
    I:=[1,13,132,1261]; [n le 4 select I[n] else 13*Self(n-1)-36*Self(n-2)+13*Self(n-3)-Self(n-4): n in [1..20]]; // Vincenzo Librandi, Dec 19 2012
  • Mathematica
    CoefficientList[Series[(1 - x)*(1 + x)/(1 - 13*x + 36*x^2 - 13*x^3 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 19 2012 *)

Formula

a(n) = A139400(n) / ( A001906(n)*A001353(n)*A004254(n) ).
a(n) = 13*a(n-1)-36*a(n-2)+13*a(n-3)-a(n-4).
a(n) = A187732(n)-A187732(n-2). - R. J. Mathar, Mar 18 2011
From Peter Bala, Apr 03 2014: (Start)
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), where alpha = 1/4*(13 + sqrt(33)), beta = 1/4*(13 - sqrt(33)) and where T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = U(n-1,1/2*(4 + sqrt(3) ))*U(n-1,1/2*(4 - sqrt(3))) for n >= 1, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -17/2; 1, 13/2].
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)

A192422 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

0, 1, 1, 5, 7, 20, 35, 83, 161, 355, 720, 1541, 3185, 6733, 14027, 29500, 61663, 129403, 270865, 567911, 1189440, 2492905, 5222449, 10943813, 22928815, 48044900, 100665083, 210927155, 441948689, 926020171, 1940274000, 4065458669, 8518311809
Offset: 0

Views

Author

Clark Kimberling, Jun 30 2011

Keywords

Comments

The polynomial p(n,x) is defined by ((x+d)/2)^n + ((x-d)/2)^n, where d=sqrt(x^2+4). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232.
Assuming the o.g.f. given below, this sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. It is the case P1 = 1, P2 = -1, Q = -1 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. Cf. A100047. - Peter Bala, Aug 28 2019

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
  p(0,x) = 2 -> 2
  p(1,x) = x -> x
  p(2,x) = 2 + x^2 -> 3 + x
  p(3,x) = 3*x + x^3 -> 1 + 5*x
  p(4,x) = 2 + 4*x^2 + x^4 -> 8 + 7*x.
From these, read A192421 = (2, 0, 3, 1, 8, ...) and a(n) = (0, 1, 1, 5, 7, ...).
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1+x^2)/(1-x-3*x^2+x^3+x^4) )); // G. C. Greubel, Jul 11 2023
    
  • Mathematica
    (See A192421.)
    LinearRecurrence[{1,3,-1,-1}, {0,1,1,5}, 40] (* G. C. Greubel, Jul 11 2023 *)
  • Maxima
    a(n):=n*sum((binomial(n-i-1,i))/(n-2*i)*fib(n-2*i),i,0,(n-1)/2); /* Vladimir Kruchinin, Mar 20 2016 */
    
  • SageMath
    @CachedFunction
    def a(n): # a = A192422
        if (n<4): return (0,1,1,5)[n]
        else: return a(n-1) +3*a(n-2) -a(n-3) -a(n-4)
    [a(n) for n in range(41)] # G. C. Greubel, Jul 11 2023

Formula

From Colin Barker, May 12 2014: (Start)
a(n) = a(n-1) + 3*a(n-2) - a(n-3) - a(n-4).
G.f.: x*(1 + x^2)/(1 - x - 3*x^2 + x^3 + x^4). (End)
From Vladimir Kruchinin, Mar 20 2016: (Start)
G.f.: ((1+x^2)/(1-x^2)) * F(x/(1-x^2)), where F(x) is g.f. of Fibonacci numbers (A000045).
a(n) = n*Sum_{i=0..floor((n-1)/2)} (binomial(n-i-1,i)/(n-2*i))*Fibonacci(n-2*i). (End)
a(n) = Sum_{j=0..n} T(n, j)*Fibonacci(j), where T(n, k) = [x^k] ((x + sqrt(x^2+4))^n + (x - sqrt(x^2+4))^n)/2^n. - G. C. Greubel, Jul 11 2023

A241606 A linear divisibility sequence of the fourth order related to A003779.

Original entry on oeis.org

1, 11, 95, 781, 6336, 51205, 413351, 3335651, 26915305, 217172736, 1752296281, 14138673395, 114079985111, 920471087701, 7426955448000, 59925473898301, 483517428660911, 3901330906652795, 31478457514091281, 253988526230055936
Offset: 1

Views

Author

Peter Bala, Apr 26 2014

Keywords

Comments

A003779, which counts spanning trees in the graph P_5 x P_n, is a linear divisibility sequence of order 16. It factors into two fourth-order linear divisibility sequences; this sequence is one of the factors, the other is A143699.
The present sequence is the case P1 = 11, P2 = 23, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy.

Crossrefs

Programs

  • Mathematica
    a[n_] := ChebyshevU[n-1, 1/4*(7-Sqrt[5])]*ChebyshevU[n-1, 1/4*(7+Sqrt[5])]; Table[a[n]//Round, {n, 1, 20}] (* Jean-François Alcover, Apr 28 2014, after Peter Bala *)

Formula

O.g.f. x*(1 - x^2)/(1 - 11*x + 25*x^2 - 11*x^3 + x^4).
a(n) = A003779(n)/A143699(n).
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), n >= 1, where alpha = 1/4*(11 + sqrt(29)), beta = 1/4*(11 - sqrt(29)) and where T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n)= U(n-1,1/4*(7 - sqrt(5)))*U(n-1,1/4*(7 + sqrt(5))), n >= 1, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = the bottom left entry of the 2X2 matrix T(n,M), where M is the 2 X 2 matrix [0, -23/4; 1, 11/2].
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences.
a(n) = 11*a(n-1) - 25*a(n-2) + 11*a(n-3) - a(n-4). - Vaclav Kotesovec, Apr 28 2014

A244895 Period 5: repeat [0, 1, 1, -1, -1].

Original entry on oeis.org

0, 1, 1, -1, -1, 0, 1, 1, -1, -1, 0, 1, 1, -1, -1, 0, 1, 1, -1, -1, 0, 1, 1, -1, -1, 0, 1, 1, -1, -1, 0, 1, 1, -1, -1, 0, 1, 1, -1, -1, 0, 1, 1, -1, -1, 0, 1, 1, -1, -1, 0, 1, 1, -1, -1, 0, 1, 1, -1, -1, 0, 1, 1, -1, -1, 0, 1, 1, -1, -1, 0, 1, 1, -1, -1, 0, 1
Offset: 0

Views

Author

Michael Somos, Jul 07 2014

Keywords

Comments

This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = z = -1.

Examples

			G.f. = x + x^2 - x^3 - x^4 + x^6 + x^7 - x^8 - x^9 + x^11 + x^12 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := {1, 1, -1, -1, 0}[[Mod[ n, 5, 1]]]; (* Michael Somos, Jan 08 2015 *)
    a[ n_] := Sign[ Mod[ n, 5, -2]]; (* Michael Somos, Jan 08 2015 *)
    PadRight[{},120,{0,1,1,-1,-1}] (* Harvey P. Dale, Nov 11 2020 *)
  • PARI
    {a(n) = [0, 1, 1, -1, -1][n%5 + 1]};
    
  • PARI
    {a(n) = sign( centerlift( Mod(n, 5)))};

Formula

G.f.: x * (1 + x) * (1 - x^2) / (1 - x^5).
Euler transform of length 5 sequence [ 1, -2, 0, 0, 1].
a(n) = -a(-n) = a(n + 5) for all n in Z.
0 = (a(n) + a(n+2)) * (a(n) - a(n+1) + a(n+2)) for all n in Z.
0 = a(n)*a(n+4) - a(n+1)*a(n+3) - a(n+2)*a(n+2) for all n in Z.
0 = a(n)*a(n+5) + a(n+1)*a(n+4) - a(n+2)*a(n+3) for all n in Z.
|A011558(n)| = |A080891(n)| = |A100047(n)| = |a(n)|. - Michael Somos, May 24 2015
a(5*n) = 0, a(5*n + 1) = a(5*n + 2) = 1, a(5*n + 3) = a(5*n + 4) = -1 for all n in Z. -Michael Somos, Nov 27 2019

A100049 A Chebyshev transform of the Padovan numbers.

Original entry on oeis.org

1, 0, -1, 1, -1, -3, 3, 3, -6, 2, 10, -13, -9, 29, -9, -43, 55, 32, -126, 48, 183, -243, -121, 541, -241, -765, 1082, 450, -2326, 1171, 3179, -4803, -1617, 9993, -5601, -13168, 21250, 5552, -42849, 26489, 54351, -93763, -17765, 183347, -124086, -223422, 412698, 49827, -782881, 576541, 914279
Offset: 0

Views

Author

Paul Barry, Oct 31 2004

Keywords

Comments

A Chebyshev transform of the Padovan numbers A000931(n+3): if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))A(x/(1+x^2)).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, -2, 1, -2, 0, -1}, {1, 0, -1, 1, -1, -3, 3}, 50] (* G. C. Greubel, Aug 08 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-x^2)*(1+x^2)^2/(1+2*x^2-x^3+2*x^4+x^6)) \\ G. C. Greubel, Aug 08 2017

Formula

G.f.: (1-x^2)*(1+x^2)^2/(1+2*x^2-x^3+2*x^4+x^6).
a(n) = -2*a(n-2) +a(n-3) -2*a(n-4) -a(n-6).
a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k,k)*A000931(n-2*k+3)/(n-k).

A140824 Expansion of (x-x^3)/(1-3*x+2*x^2-3*x^3+x^4).

Original entry on oeis.org

0, 1, 3, 6, 15, 41, 108, 281, 735, 1926, 5043, 13201, 34560, 90481, 236883, 620166, 1623615, 4250681, 11128428, 29134601, 76275375, 199691526, 522799203, 1368706081, 3583319040, 9381251041, 24560434083, 64300051206, 168339719535, 440719107401, 1153817602668
Offset: 0

Views

Author

N. J. A. Sloane, Sep 07 2009, based on email from R. K. Guy, Mar 09 2009

Keywords

Comments

Case P1 = 3, P2 = 0, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 25 2014

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -2, 3, -1}, {0, 1, 3, 6}, 50] (* G. C. Greubel, Aug 08 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec((x-x^3)/(1-3*x+2*x^2-3*x^3+x^4))) \\ G. C. Greubel, Aug 08 2017

Formula

a(0) = 0, a(1) = 1, a(2) = 3, a(3) = 6, a(n) - 3 a(n + 1) + 2 a(n + 2) - 3 a(n + 3) + a(n + 4) = 0.
From Peter Bala, Mar 25 2014: (Start)
a(n) = 2/3*( T(n,3/2) - T(n,0) ), where T(n,x) is a Chebyshev polynomial of the first kind.
a(n) = 1/3 * (A005248(n) - (i^n + (-i)^n)) = 1/3 * (Fibonacci(2*n-1) + Fibonacci(2*n+1) - (i^n + (-i)^n)).
a(n) = bottom left entry of the 2 X 2 matrix 2*T(n, 1/2*M), where M is the 2 X 2 matrix [0, 0; 1, 3].
The o.g.f. is the Hadamard product of the rational functions x/(1 - 1/sqrt(2)*(sqrt(5) + i)*x + x^2) and x/(1 - 1/sqrt(2)*(sqrt(5) - i)*x + x^2). See the remarks in A100047 for the general connection between Chebyshev polynomials and 4th-order linear divisibility sequences. (End)
a(n) = A099483(n) - A099483(n-2). - R. J. Mathar, Feb 10 2016

A171065 G.f. -x*(x-1)*(1+x)/(1-x-8*x^2-x^3+x^4).

Original entry on oeis.org

0, 1, 1, 8, 17, 81, 224, 881, 2737, 9928, 32481, 113761, 380800, 1313441, 4441121, 15215688, 51677297, 176530481, 600723424, 2049428881, 6980069457, 23799693448, 81088954561, 276417142721, 941948403200, 3210574806081
Offset: 0

Views

Author

R. J. Mathar, at the request of R. K. Guy, Sep 03 2010

Keywords

Comments

The member k=8 of a family of sequences starting 0,1,1,k with recurrence a(n) = a(n-1)+k*a(n-2)+a(n-3)-a(n-4).
This is the case P1 = 1, P2 = -10, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 31 2014

Crossrefs

Cf. A116201 (k=1), A105309 (k=2), A152090 (k=3), A007598 (k=4), A005178 (k=5), A003757 (k=6). A100047.

Programs

  • Magma
    I:=[0, 1, 1, 8]; [n le 4 select I[n] else Self(n-1) + 8*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
  • Mathematica
    CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 8*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
    LinearRecurrence[{1,8,1,-1},{0,1,1,8},30] (* Harvey P. Dale, Dec 27 2017 *)

Formula

a(n)= +a(n-1) +8*a(n-2) +a(n-3) -a(n-4).
From Peter Bala, Mar 31 2014: (Start)
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), where alpha = (1 + sqrt(41))/4 and beta = (1 - sqrt(41))/4 and T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 5/2; 1, 1/2].
a(n) = U(n-1,i*(1 + sqrt(2))/2)*U(n-1,i*(1 + sqrt(2))/2), where U(n,x) denotes the Chebyshev polynomial of the second kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials and 4th-order linear divisibility sequences. (End)

A248848 Norm of coefficients in the expansion of 1/(1 - 3*x - I*x^2), where I^2=-1.

Original entry on oeis.org

1, 9, 82, 765, 7129, 66420, 618841, 5765805, 53720578, 500519961, 4663394209, 43449307200, 404821512289, 3771762252921, 35141883671458, 327420421852365, 3050608602778201, 28422823459498740, 264818270254044889, 2467338136208552925, 22988434568917776562, 214185529001504000169
Offset: 0

Views

Author

Paul D. Hanna, Nov 02 2014

Keywords

Comments

Working with an offset of 1, this sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. It is the case P1 = 9, P2 = -4, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Dec 02 2014

Examples

			G.f.: A(x) = 1 + 9*x + 82*x^2 + 765*x^3 + 7129*x^4 + 66420*x^5 +...
If we expand the complex series:
1/(1 - 3*x + I*x^2) = 1 + 3*x + (9 - I)*x^2 + (27 - 6*I)*x^3 + (80 - 27*I)*x^4 + (234 - 108*I)*x^5 + (675 - 404*I)*x^6 + (1917 - 1446*I)*x^7 + (5347 - 5013*I)*x^8 + (14595 - 16956*I)*x^9 +...
then the terms of this sequence equals the norm of the above coefficients:
a(0) = 1^2 = 1;
a(1) = 3^2 = 9;
a(2) = 9^2 + (-1)^2 = 82;
a(3) = 27^2 + (-6)^2 = 765;
a(4) = 80^2 + (-27)^2 = 7129;
a(5) = 234^2 + (-108)^2 = 66420; ...
		

Crossrefs

Cf. A100047.

Programs

  • Magma
    I:=[1,9,82,765]; [n le 4 select I[n] else 9*Self(n-1)+2*Self(n-2)+9*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
  • Mathematica
    Abs[CoefficientList[Series[1/(1 - 3*x - I*x^2), {x, 0, 20}], x]]^2 (* Vaclav Kotesovec, Nov 09 2014 *)
  • PARI
    {a(n)=(polcoeff(1/(1-3*x+I*x^2 +x*O(x^n)), n))}
    for(n=0, 31, print1(norm(a(n)), ", "))
    

Formula

G.f.: (1-x^2)/(1 - 9*x - 2*x^2 - 9*x^3 + x^4).
a(n) = 9*a(n-1) + 2*a(n-2) + 9*a(n-3) - a(n-4). - Vaclav Kotesovec, Nov 09 2014
a(n) ~ (1 + 9/sqrt(97) + 3*sqrt((18+2*sqrt(97))/97)) * (9 + sqrt(97) + 3*sqrt(18+2*sqrt(97)))^n / 4^(n+1). - Vaclav Kotesovec, Nov 09 2014
From Peter Bala, Dec 02 2014: (Start)
The following remarks assume an offset of 1:
a(n) = ( T(n,a) - T(n,b) )/(a - b), where T(n,x) denotes the Chebyshev polynomial of the first kind and where a = ( 9 + sqrt(97) )/4 and b = ( 9 - sqrt(97) )/4 denote the roots of the quadratic equation x^2 - 9/2*x - 1 = 0.
a(n) = the bottom left entry of the 2 X 2 matrix 2*T(n,1/2*M), where M is the 2 X 2 matrix [0, 4; 1, 9]. See A100047. (End)

A351683 Squares that are also 4-dimensional pyramidal numbers.

Original entry on oeis.org

0, 1, 196, 38025, 7376656, 1431033241, 277613072100, 53855504954161, 10447690348035136, 2026798072013862225, 393188378280341236516, 76276518588314186021881, 14797251417754671747008400, 2870590498525818004733607721, 556879759462590938246572889476
Offset: 1

Views

Author

Kelvin Voskuijl, May 05 2022

Keywords

Comments

This sequence is a quartic divisibility sequence. a(n+1) divides a(m+1) whenever n divides m. This is because this sequence is based on solutions to a special case of the general Jacobi quartic form y^2 = b*x^4 - 2*c*x^2 + 1. - Thomas Scheuerle, May 06 2022

Examples

			196 is a term because 196 = 14^2 is a perfect square and 196 = (2*6 + 5*6^2 + 4*6^3 + 6^4)/12 is the 6th four-dimensional pyramidal number.
		

Crossrefs

Intersection of A000290 and A002415.

Programs

  • Mathematica
    Select[Table[1/12 (2 n + 5 n^2 + 4 n^3 + n^4), {n, 0, 75000}], IntegerQ[Sqrt[#]]&]

Formula

a(n) = A007655(n)^2.
a(2*n - 2) = (a(n) - a(n-1))^2, for n > 1. - Thomas Scheuerle, May 06 2022
O.g.f.: A(x) = x^2*(1 - x^2)/(1 - 196*x + 390*x^2 - 196*x^3 + x^4). With offset 0, this is the case P1 = 196, P2 = 194, Q = 1 of a 3-parameter family of fourth-order linear divisibility sequences. See A100047 for further details. - Peter Bala, Nov 28 2022

Extensions

a(11)-a(14) from Amiram Eldar, May 05 2022
a(15) from Kelvin Voskuijl, Jun 05 2022
Previous Showing 51-60 of 60 results.