cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A239331 Square array, read by antidiagonals: column k has g.f. (1+(k-1)*x)^2/(1-x)^3.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 7, 13, 10, 1, 1, 9, 22, 25, 15, 1, 1, 11, 33, 46, 41, 21, 1, 1, 13, 46, 73, 79, 61, 28, 1, 1, 15, 61, 106, 129, 121, 85, 36, 1, 1, 17, 78, 145, 191, 201, 172, 113, 45, 1, 1, 19, 97, 190, 265, 301, 289, 232, 145, 55, 1, 1, 21
Offset: 0

Views

Author

Philippe Deléham, Mar 16 2014

Keywords

Examples

			Square array begins:
n\k : 0......1......2......3......4......5......6......7......8......9
======================================================================
.0||  1......1......1......1......1......1......1......1......1......1
.1||  1......3......5......7......9.....11.....13.....15.....17.....19
.2||  1......6.....13.....22.....33.....46.....61.....78.....97....118
.3||  1.....10.....25.....46.....73....106....145....190....241....298
.4||  1.....15.....41.....79....129....191....265....351....449....559
.5||  1.....21.....61....121....201....301....421....561....721....901
.6||  1.....28.....85....172....289....436....613....820...1057...1324
.7||  1.....36....113....232....393....596....841...1128...1457...1828
.8||  1.....45....145....301....513....781...1105...1485...1921...2413
.9||  1.....55....181....379....649....991...1405...1891...2449...3079
10||  1.....66....221....466....801...1226...1741...2346...3041...3826
11||  1.....78....265....562....969...1486...2113...2850...3697...4654
		

Crossrefs

Formula

T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k).
T(n,k) = 3*T(n,k-1) - 3*T(n,k-2) + T(n,k-3).
T(n,k) = (T(n,k-1) + T(n,k+1))/2 - A161680(n).
T(n,k) = (T(n-1,k) + T(n+1,k) - A000290(n))/2.

A271723 Numbers k such that 3*k - 8 is a square.

Original entry on oeis.org

3, 4, 8, 11, 19, 24, 36, 43, 59, 68, 88, 99, 123, 136, 164, 179, 211, 228, 264, 283, 323, 344, 388, 411, 459, 484, 536, 563, 619, 648, 708, 739, 803, 836, 904, 939, 1011, 1048, 1124, 1163, 1243, 1284, 1368, 1411, 1499, 1544, 1636, 1683, 1779, 1828, 1928, 1979, 2083, 2136, 2244, 2299
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 13 2016

Keywords

Comments

Square roots of resulting squares gives A001651. - Ray Chandler, Apr 14 2016

Examples

			a(1) = 3 because 3*3 - 8 = 1^2.
		

Crossrefs

Cf. A001651.
Cf. numbers n such that 3*n + k is a square: this sequence (k=-8), A120328 (k=-6), A271713 (k=-5), A056107 (k=-3), A257083 (k=-2), A033428 (k=0), A001082 (k=1), A080663 (k=3), A271675 (k=4), A100536 (k=6), A271741 (k=7), A067725 (k=9).

Programs

  • Magma
    [n: n in [1..2400] | IsSquare(3*n-8)];
    
  • Maple
    seq(seq(((3*m+k)^2+8)/3, k=1..2),m=0..50); # Robert Israel, Dec 05 2016
  • Mathematica
    Select[Range@ 2400, IntegerQ@ Sqrt[3 # - 8] &] (* Bruno Berselli, Apr 14 2016 *)
    LinearRecurrence[{1,2,-2,-1,1},{3,4,8,11,19},60] (* Harvey P. Dale, Oct 02 2020 *)
  • Python
    from gmpy2 import is_square
    [n for n in range(3000) if is_square(3*n-8)] # Bruno Berselli, Dec 05 2016
    
  • Python
    [(6*(n-1)*n-(2*n-1)*(-1)**n+23)/8 for n in range(1, 60)] # Bruno Berselli, Dec 05 2016

Formula

From Ilya Gutkovskiy, Apr 13 2016: (Start)
G.f.: x*(3 + x - 2*x^2 + x^3 + 3*x^4)/((1 - x)^3*(1 + x)^2).
a(n) = (6*(n - 1)*n - (2*n - 1)*(-1)^n + 23)/8. (End)

A193516 T(n,k) = number of ways to place any number of 4X1 tiles of k distinguishable colors into an nX1 grid.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 5, 4, 1, 1, 1, 5, 7, 7, 5, 1, 1, 1, 6, 9, 10, 9, 7, 1, 1, 1, 7, 11, 13, 13, 15, 10, 1, 1, 1, 8, 13, 16, 17, 25, 25, 14, 1, 1, 1, 9, 15, 19, 21, 37, 46, 39, 19, 1, 1, 1, 10, 17, 22, 25, 51, 73, 76, 57, 26, 1, 1, 1, 11, 19, 25, 29, 67, 106, 125
Offset: 1

Views

Author

R. H. Hardin, with proof and formula from Robert Israel in the Sequence Fans Mailing List, Jul 29 2011

Keywords

Comments

Table starts:
..1...1...1...1....1....1....1....1....1....1....1.....1.....1.....1.....1
..1...1...1...1....1....1....1....1....1....1....1.....1.....1.....1.....1
..1...1...1...1....1....1....1....1....1....1....1.....1.....1.....1.....1
..2...3...4...5....6....7....8....9...10...11...12....13....14....15....16
..3...5...7...9...11...13...15...17...19...21...23....25....27....29....31
..4...7..10..13...16...19...22...25...28...31...34....37....40....43....46
..5...9..13..17...21...25...29...33...37...41...45....49....53....57....61
..7..15..25..37...51...67...85..105..127..151..177...205...235...267...301
.10..25..46..73..106..145..190..241..298..361..430...505...586...673...766
.14..39..76.125..186..259..344..441..550..671..804...949..1106..1275..1456
.19..57.115.193..291..409..547..705..883.1081.1299..1537..1795..2073..2371
.26..87.190.341..546..811.1142.1545.2026.2591.3246..3997..4850..5811..6886
.36.137.328.633.1076.1681.2472.3473.4708.6201.7976.10057.12468.15233.18376

Examples

			Some solutions for n=9 k=3; colors=1, 2, 3; empty=0
..0....3....0....0....3....3....0....0....0....0....2....2....0....0....1....2
..1....3....0....2....3....3....3....0....0....0....2....2....1....0....1....2
..1....3....0....2....3....3....3....2....0....0....2....2....1....0....1....2
..1....3....3....2....3....3....3....2....1....0....2....2....1....0....1....2
..1....0....3....2....0....3....3....2....1....0....2....0....1....0....0....0
..2....3....3....2....0....3....3....2....1....3....2....2....0....0....0....3
..2....3....3....2....0....3....3....0....1....3....2....2....0....0....0....3
..2....3....0....2....0....3....3....0....0....3....2....2....0....0....0....3
..2....3....0....2....0....0....3....0....0....3....0....2....0....0....0....3
		

Crossrefs

Column 1 is A003269(n+1),
Column 2 is A052942,
Column 3 is A143454(n-3),
Row 8 is A082111,
Row 9 is A100536(n+1),
Row 10 is A051866(n+1).

Programs

  • Maple
    T:= proc(n, k) option remember;
          `if`(n<0, 0,
          `if`(n<4 or k=0, 1, k*T(n-4, k) +T(n-1, k)))
        end:
    seq(seq(T(n, d+1-n), n=1..d), d=1..13); # Alois P. Heinz, Jul 29 2011
  • Mathematica
    T[n_, k_] := T[n, k] = If[n < 0, 0, If[n < 4 || k == 0, 1, k*T[n-4, k]+T[n-1, k]]]; Table[Table[T[n, d+1-n], {n, 1, d}], {d, 1, 13}] // Flatten (* Jean-François Alcover, Mar 04 2014, after Alois P. Heinz *)

Formula

With z X 1 tiles of k colors on an n X 1 grid (with n >= z), either there is a tile (of any of the k colors) on the first spot, followed by any configuration on the remaining (n-z) X 1 grid, or the first spot is vacant, followed by any configuration on the remaining (n-1) X 1. So T(n,k) = T(n-1,k) + k*T(n-z,k), with T(n,k) = 1 for n=0,1,...,z-1. The solution is T(n,k) = sum_r r^(-n-1)/(1 + z k r^(z-1)) where the sum is over the roots of the polynomial k x^z + x - 1.
T(n,k) = sum {s=0..[n/4]} (binomial(n-3*s,s)*k^s).
For z X 1 tiles, T(n,k,z) = sum{s=0..[n/z]} (binomial(n-(z-1)*s,s)*k^s). - R. H. Hardin, Jul 31 2011

A196507 a(n) = n*(3*n^2 + 6*n + 1).

Original entry on oeis.org

0, 10, 50, 138, 292, 530, 870, 1330, 1928, 2682, 3610, 4730, 6060, 7618, 9422, 11490, 13840, 16490, 19458, 22762, 26420, 30450, 34870, 39698, 44952, 50650, 56810, 63450, 70588, 78242, 86430, 95170, 104480, 114378, 124882
Offset: 0

Views

Author

R. J. Mathar, Oct 03 2011

Keywords

References

  • Jolley, Summation of Series, Dover (1961), eq. 45 on page 8.

Programs

Formula

a(n) = 2*5 + 5*8 + 8*11 + ... + (3*k-1)*(3*k+2) + ... (n terms) = n*A100536(n+1).
G.f.: -2*x*(-5 - 5*x + x^2) / (x-1)^4.
E.g.f.: exp (x)*(10*x + 15*x^2 + 3*x^3). - Franck Maminirina Ramaharo, Nov 22 2018

A361731 Array read by descending antidiagonals. A(n, k) = hypergeom([-k, -3], [1], n).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 10, 7, 1, 1, 20, 25, 10, 1, 1, 35, 63, 46, 13, 1, 1, 56, 129, 136, 73, 16, 1, 1, 84, 231, 307, 245, 106, 19, 1, 1, 120, 377, 586, 593, 396, 145, 22, 1, 1, 165, 575, 1000, 1181, 1011, 595, 190, 25, 1, 1, 220, 833, 1576, 2073, 2076, 1585, 848, 241, 28, 1
Offset: 0

Views

Author

Peter Luschny, Mar 22 2023

Keywords

Examples

			Array A(n, k) starts:
 [0] 1,  1,   1,   1,    1,    1,    1,     1, ...  A000012
 [1] 1,  4,  10,  20,   35,   56,   84,   120, ...  A000292
 [2] 1,  7,  25,  63,  129,  231,  377,   575, ...  A001845
 [3] 1, 10,  46, 136,  307,  586, 1000,  1576, ...  A081583
 [4] 1, 13,  73, 245,  593, 1181, 2073,  3333, ...  A081586
 [5] 1, 16, 106, 396, 1011, 2076, 3716,  6056, ...  A081588
 [6] 1, 19, 145, 595, 1585, 3331, 6049,  9955, ...  A081590
 [7] 1, 22, 190, 848, 2339, 5006, 9192, 15240, ...
.
Table T(n, k) starts:
 [0] 1;
 [1] 1,   1;
 [2] 1,   4,   1;
 [3] 1,  10,   7,    1;
 [4] 1,  20,  25,   10,    1;
 [5] 1,  35,  63,   46,   13,    1;
 [6] 1,  56, 129,  136,   73,   16,   1;
 [7] 1,  84, 231,  307,  245,  106,  19,   1;
 [8] 1, 120, 377,  586,  593,  396, 145,  22,  1;
 [9] 1, 165, 575, 1000, 1181, 1011, 595, 190, 25, 1;
		

Crossrefs

Columns: A000012, A016777, A100536.
Hypergeometric family: A000012 (m=0), A077028 (m=1), A361682 (m=2), this array (m=3).

Programs

  • Maple
    A := (n, k) -> 1 + (((k*n - 3*n + 9)*n*k + (2*n - 9)*n + 18)*n*k)/6;
    seq(print(seq(A(n, k), k = 0..7)), n = 0..7);
    # Alternative:
    ogf := n -> (1 + (n - 1) * x)^3 / (1 - x)^4:
    ser := n -> series(ogf(n), x, 12):
    row := n -> seq(coeff(ser(n), x, k), k = 0..9):
    seq(print(row(n)), n = 0..9);

Formula

A(n, k) = [x^k] (1 + (n - 1) * x)^3 / (1 - x)^4.
A(n, k) = 1 + (((k*n - 3*n + 9)*n*k + (2*n - 9)*n + 18)*n*k)/6.
T(n, k) = 1 + (((k*(n - k) - 3*k + 9)*k*(n - k) + (2*k - 9)*k + 18)*k*(n - k))/6.

A182397 Numerators in triangle that leads to the (first) Bernoulli numbers A027641/A027642.

Original entry on oeis.org

1, 1, -3, 1, -5, 5, 1, -7, 25, -5, 1, -9, 23, -35, 49, 1, -11, 73, -27, 112, -49, 1, -13, 53, -77, 629, -91, 58, 1, -15, 145, -130, 1399, -451, 753, -58, 1, -17, 95, -135, 2699, -2301, 8573, -869, 341, 1, -19, 241
Offset: 0

Views

Author

Paul Curtz, Apr 27 2012

Keywords

Comments

In A190339 we saw that (the second Bernoulli numbers) A164555/A027642 is an eigensequence (its inverse binomial transform is the sequence signed) of the second kind, see A192456/A191302. We consider this array preceded by 1 for the second row, by 1, -3/2, for the third one; 1 is chosen and is followed by the differences of successive rows.
Hence
1 1/2 1/6 0
1 -1/2 -1/3 -1/6 -1/30
1 -3/2 1/6 1/6 2/15 1/15
1 -5/2 5/3 0 -1/30 -1/15 -8/105.
The second row is A051716/A051717.
The (reduced) triangle before the square array (T(n,m) in A190339) is a(n)/b(n)=
B(0)= 1 = 1 Redbernou1li
B(1)= -1/2 = 1 -3/2
B(2)= 1/6 = 1 -5/2 5/3
B(3)= 0 = 1 -7/2 25/6 -5/3
B(4)=-1/30 = 1 -9/2 23/3 -35/6 49/30
B(5)= 0 = 1 -11/2 73/6 -27/2 112/15 -49/30.
For the main diagonal, see A165142.
Denominator b(n) will be submitted.
This transform is valuable for every eigensequence of the second kind. For instance Leibniz's 1/n (A003506).
With increasing exponents for coefficients, polynomials CB(n,x) create Redbernou1li. See the formula.
Triangle Bernou1li for A027641/A027642 with the same denominator A080326 for every column is
1
1 -3/2
1 -5/2 10/6
1 -7/2 25/6 -10/6
1 -9/2 46/6 -35/6 49/30
1 -11/2 73/6 -81/6 224/30 -49/30.
For numerator by columns,see A000012, -A144396, A100536, Q(n)=n*(2*n^2+9*n+9)/2 , new.
Triangle Checkbernou1 with the same denominator A080326 for every row is
1/1
(2 -3)/2
(6 -15 +10)/6
(6 -21 +25 -10)/6
(30 -135 +230 -175 +49)/30
(30 -165 +365 -405 +224 -49)/30;
Hence for numerator: 1, 2-3, 16-15, 31-31, 309-310, 619-619, 8171-8166.
Absolute sum: 1, 5, 31, 62, 619, 1238, 17337. Reduced division by A080326:
1, 5/2, 31/6, 31/3, 619/30, 619/15, 5779/70, = A172030(n+1)/A172031(n+1).

Crossrefs

Cf. A028246 (Worpitzky), A085737/A085738 (Conway-Sloane), A051714/A051715 (Akiyama-Tanigawa), A192456/A191302 for other triangles that lead to the Bernoulli numbers.

Formula

CB(0,x) = 1,
CB(1,x) = 1 - 3*x/2,
CB(n,x) = (1-x)*CB(n-1,x) + B(n)*x^n , n > 1.

A374584 Numbers k such that 7*k + 2 is a square.

Original entry on oeis.org

1, 2, 14, 17, 41, 46, 82, 89, 137, 146, 206, 217, 289, 302, 386, 401, 497, 514, 622, 641, 761, 782, 914, 937, 1081, 1106, 1262, 1289, 1457, 1486, 1666, 1697, 1889, 1922, 2126, 2161, 2377, 2414, 2642, 2681, 2921, 2962, 3214, 3257, 3521, 3566, 3842, 3889
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 12 2024

Keywords

Crossrefs

The numbers k such that (m + (9-m)*k) is a square: A000217 (m = 1), this sequence (m = 2), A003154 (m = 3), A195162 (m = 4), A028387 (m = 5), A100536 (m = 6), A059993 (m = 7), A028884 (m = 8).
Cf. A047341.

Programs

  • Magma
    [k: k in [0..4000] | IsSquare(7*k + 2)];
  • Mathematica
    ((Table[7*n + {3, 4}, {n, 0, 23}] // Flatten)^2 - 2)/7 (* Amiram Eldar, Aug 12 2024 *)

Formula

a(n) = (A047341(n)^2 - 2)/7. - Amiram Eldar, Aug 12 2024
Previous Showing 11-17 of 17 results.