A289626
Restricted growth sequence transform of A289625, related to the structure of multiplicative group of integers modulo n.
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 4, 5, 4, 3, 6, 5, 7, 4, 8, 8, 9, 4, 10, 8, 11, 6, 12, 13, 14, 7, 10, 11, 15, 8, 16, 17, 18, 9, 19, 11, 20, 10, 19, 21, 22, 11, 23, 18, 19, 12, 24, 21, 23, 14, 25, 19, 26, 10, 27, 28, 29, 15, 30, 21, 31, 16, 32, 25, 33, 18, 34, 25, 35, 19, 36, 28, 37, 20, 27, 29, 38, 19, 39, 40, 41, 22, 42, 28, 43, 23, 44, 45, 46, 19, 47, 35, 38, 24, 48, 49
Offset: 1
-
rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
A289625(n) = { my(m=1,p=2,v=znstar(n)[2]); for(i=1,length(v),m *= p^v[i]; p = nextprime(p+1)); (m); };
write_to_bfile(1,rgs_transform(vector(16384,n,A289625(n))),"b289626_upto16384.txt");
A295300
Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A003557(n), A046523(n), A048250(n)].
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 44, 49, 50, 51, 44, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 58, 62, 65, 66, 67, 68, 69, 70, 58, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 80
Offset: 1
Cf.
A003557,
A046523,
A048250,
A101296,
A286360,
A291750,
A291751,
A291752,
A291757,
A291758,
A295888,
A296090,
A322021,
A326199.
-
up_to = 100000;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
Aux295300(n) = (1/2)*(2 + ((A046523(n) + A291750(n))^2) - A046523(n) - 3*A291750(n));
v295300 = rgs_transform(vector(up_to,n,Aux295300(n)));
A295300(n) = v295300[n];
Name changed and the comments section added by
Antti Karttunen, Jul 13 2019
A064839
List the natural numbers starting a new row only with each new least prime signature (A025487). a(n) is the column position associated with n.
Original entry on oeis.org
1, 1, 2, 1, 3, 1, 4, 1, 2, 2, 5, 1, 6, 3, 4, 1, 7, 2, 8, 3, 5, 6, 9, 1, 3, 7, 2, 4, 10, 1, 11, 1, 8, 9, 10, 1, 12, 11, 12, 2, 13, 2, 14, 5, 6, 13, 15, 1, 4, 7, 14, 8, 16, 3, 15, 4, 16, 17, 17, 1, 18, 18, 9, 1, 19, 3, 19, 10, 20, 4, 20, 1, 21, 21, 11, 12, 22, 5, 22, 2, 2, 23, 23, 2, 24, 25, 26
Offset: 1
The list begins as follows:
1
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 ...
4 9 25 49 ...
6 10 14 15 21 22 26 33 34 35 38 39 46 51 ...
8 27 ...
12 18 20 28 44 45 50 52 ...
16 ...
Note: the above array, without the initial 1, is given by A095904 (and its transpose A179216). - _Antti Karttunen_, May 15 2017
-
p:= proc() 0 end:
a:= proc(n) option remember; local t; a(n-1);
t:= (l-> mul(ithprime(i)^l[i], i=1..nops(l)))(
sort(map(i-> i[2], ifactors(n)[2]), `>`));
p(t):= p(t)+1
end: a(0):=0:
seq(a(n), n=1..100); # Alois P. Heinz, May 31 2020
-
prisig[n_]:=If[n==1,{},Sort[Last/@FactorInteger[n]]];
Table[Count[Array[prisig,n],prisig[n]],{n,30}] (* Gus Wiseman, Jul 08 2019 *)
A050345
Number of ways to factor n into distinct factors with one level of parentheses.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 6, 1, 3, 3, 4, 1, 6, 1, 6, 3, 3, 1, 13, 1, 3, 3, 6, 1, 12, 1, 7, 3, 3, 3, 15, 1, 3, 3, 13, 1, 12, 1, 6, 6, 3, 1, 25, 1, 6, 3, 6, 1, 13, 3, 13, 3, 3, 1, 31, 1, 3, 6, 12, 3, 12, 1, 6, 3, 12, 1, 37, 1, 3, 6, 6, 3, 12, 1, 25, 4, 3, 1, 31, 3, 3, 3, 13, 1, 31, 3, 6, 3, 3
Offset: 1
12 = (12) = (6*2) = (6)*(2) = (4*3) = (4)*(3) = (3*2)*(2).
From _Gus Wiseman_, Apr 26 2025: (Start)
This is the number of ways to partition a factorization of n (counted by A001055) into a set of sets. For example, the a(12) = 6 choices are:
{{2},{2,3}}
{{2},{6}}
{{3},{4}}
{{2,6}}
{{3,4}}
{{12}}
(End)
For multisets of multisets we have
A050336.
The case of a unique choice (positions of 1) is
A166684.
A050320 counts factorizations into squarefree numbers, distinct
A050326.
A302494 gives MM-numbers of sets of sets.
A382077 counts partitions that can be partitioned into a sets of sets, ranks
A382200.
A382078 counts partitions that cannot be partitioned into a sets of sets, ranks
A293243.
-
facs[n_]:=If[n<=1,{{}}, Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d, Rest[Divisors[n]]}]];
sps[{}]:={{}};sps[set:{i_,_}] := Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort /@ (#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
Table[Sum[Length[Select[mps[y], UnsameQ@@#&&And@@UnsameQ@@@#&]], {y,facs[n]}],{n,30}] (* Gus Wiseman, Apr 26 2025 *)
A077462
Prime factor configuration patterns.
Original entry on oeis.org
0, 1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 8, 2, 6, 4, 4, 2, 9, 3, 4, 5, 6, 2, 10, 2, 11, 4, 4, 4, 12, 2, 4, 4, 9, 2, 10, 2, 6, 6, 4, 2, 13, 3, 8, 4, 6, 2, 14, 4, 9, 4, 4, 2, 15, 2, 4, 6, 16, 4, 10, 2, 6, 4, 10, 2, 17, 2, 4, 8, 6, 4, 10, 2, 13, 7, 4
Offset: 0
12 = 2^2*3^1 has exponents {2,1}, and is the first number with that pattern, so its value is one more than the largest previous value; a(12) = 6. Contrast that with 18 = 2^1*3^2 having exponents {1,2}, which is different from {2,1}, so a(18) is not equal to a(12). - _Franklin T. Adams-Watters_, Aug 01 2012
-
fList = {{0}}; Join[{0, 1}, Table[e = Transpose[FactorInteger[n]][[2]]; pos = Position[fList, e]; If[pos == {}, AppendTo[fList, e]; Length[fList], pos[[1, 1]]], {n, 2, 100}]] (* T. D. Noe, Aug 01 2012 *)
-
a(n)=local(vn); if(n<1,return(0)); vn=factor(n)[,2]; for(i=1,n,if(vn==factor(i)[,2],return(#Set(vector(i,j,factor(j)[,2])))))
-
up_to = 100000;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
A071364(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = prime(i)); factorback(f); }; \\ From A071364
v077462 = rgs_transform(vector(up_to,n,A071364(n)));
A077462(n) = if(!n,n,v077462[n]); \\ Antti Karttunen, Jun 13 2018
A322827
A permutation of A025487: Sequence of least representatives of distinct prime signatures obtained from the run lengths present in the binary expansion of n.
Original entry on oeis.org
1, 2, 6, 4, 36, 30, 12, 8, 216, 180, 210, 900, 72, 60, 24, 16, 1296, 1080, 1260, 5400, 44100, 2310, 6300, 27000, 432, 360, 420, 1800, 144, 120, 48, 32, 7776, 6480, 7560, 32400, 264600, 13860, 37800, 162000, 9261000, 485100, 30030, 5336100, 1323000, 69300, 189000, 810000, 2592, 2160, 2520, 10800, 88200, 4620, 12600
Offset: 0
The sequence can be represented as a binary tree:
1
|
...................2...................
6 4
36......../ \........30 12......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
216 180 210 900 72 60 24 16
etc.
Both children are multiples of their common parent, see A323503, A323504 and A323507.
The value of a(n) is computed from the binary expansion of n as follows: Starting from the least significant end of the binary expansion of n (A007088), we record the successive run lengths, subtract one from all lengths except the first one, and use the reversed partial sums of these adjusted values as the exponents of successive primes.
For 11, which is "1011" in base 2, we have run lengths [2, 1, 1] when scanned from the right, and when one is subtracted from all except the first, we have [2, 0, 0], partial sums of which is [2, 2, 2], which stays same when reversed, thus a(11) = 2^2 * 3^2 * 5^2 = 900.
For 13, which is "1101" in base 2, we have run lengths [1, 1, 2] when scanned from the right, and when one is subtracted from all except the first, we have [1, 0, 1], partial sums of which is [1, 1, 2], reversed [2, 1, 1], thus a(13) = 2^2 * 3^1 * 5^1 = 60.
Sequence A227183 is based on the same algorithm.
Cf.
A000079 (right edge),
A000400 (left edge, apart from 2),
A005811,
A046523,
A101296,
A227183,
A322585,
A322825,
A323503,
A323504,
A323507.
-
{1}~Join~Array[Times @@ MapIndexed[Prime[First@ #2]^#1 &, Reverse@ Accumulate@ MapIndexed[Length[#1] - Boole[First@ #2 > 1] &, Split@ Reverse@ IntegerDigits[#, 2]]] &, 54] (* Michael De Vlieger, Feb 05 2020 *)
-
A322827(n) = if(!n,1,my(bits = Vecrev(binary(n)), rl=1, o = List([])); for(i=2,#bits,if(bits[i]==bits[i-1], rl++, listput(o,rl))); listput(o,rl); my(es=Vecrev(Vec(o)), m=1); for(i=1,#es,m *= prime(i)^es[i]); (m));
A359763
Dirichlet inverse of A065043, where A065043 is the characteristic function of the numbers with an even number of prime factors (counted with multiplicity).
Original entry on oeis.org
1, 0, 0, -1, 0, -1, 0, 0, -1, -1, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, -1, -1, 0, 1, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, 2, 0, -1, -1, 1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, -1, 0, 0, 1, -1, 1, -1, -1, 0, 3, 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, -1, 0, 3, -1, -1, -1, 1, 0, 3, -1, 0, -1, -1, -1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0
Offset: 1
-
A065043(n) = (1 - (bigomega(n)%2));
memoA359763 = Map();
A359763(n) = if(1==n,1,my(v); if(mapisdefined(memoA359763,n,&v), v, v = -sumdiv(n,d,if(dA065043(n/d)*A359763(d),0)); mapput(memoA359763,n,v); (v)));
A234840
Self-inverse and multiplicative permutation of integers: a(0) = 0, a(1) = 1, a(2) = 3, a(3) = 2, a(p_i) = p_{a(i+1)-1} for primes with index i > 2, and a(u * v) = a(u) * a(v) for u, v > 0.
Original entry on oeis.org
0, 1, 3, 2, 9, 19, 6, 61, 27, 4, 57, 11, 18, 281, 183, 38, 81, 101, 12, 5, 171, 122, 33, 263, 54, 361, 843, 8, 549, 29, 114, 59, 243, 22, 303, 1159, 36, 1811, 15, 562, 513, 1091, 366, 157, 99, 76, 789, 409, 162, 3721, 1083, 202, 2529, 541, 24, 209, 1647, 10, 87, 31
Offset: 0
a(4) = a(2 * 2) = a(2)*a(2) = 3*3 = 9.
a(5) = a(p_3) = p_{a(3+1)-1} = p_{9-1} = p_8 = 19.
a(11) = a(p_5) = p_{a(5+1)-1} = p_{a(6)-1} = p_5 = 11.
List below gives similarly constructed permutations, which all force a swap of two small numbers, with (the rest of) primes permuted with the sequence itself and the new positions of composite numbers defined by the multiplicative property. Apart from the first one, all satisfy
A000040(a(n)) = a(
A000040(n)) except for a finite number of cases (with
A235200, substitute
A065091 for
A000040):
-
a[n_] := a[n] = Switch[n, 0, 0, 1, 1, 2, 3, 3, 2, _, Product[{p, e} = pe; Prime[a[PrimePi[p] + 1] - 1]^e, {pe, FactorInteger[n]}]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 21 2021 *)
-
A234840(n) = if(n<=1,n,my(f = factor(n)); for(i=1, #f~, if(2==f[i,1], f[i,1]++, if(3==f[i,1], f[i,1]--, f[i,1] = prime(-1+A234840(1+primepi(f[i,1])))))); factorback(f)); \\ Antti Karttunen, Aug 23 2018
A277120
Number of branching factorizations of n.
Original entry on oeis.org
0, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 11, 1, 3, 3, 15, 1, 11, 1, 11, 3, 3, 1, 45, 2, 3, 5, 11, 1, 19, 1, 51, 3, 3, 3, 62, 1, 3, 3, 45, 1, 19, 1, 11, 11, 3, 1, 195, 2, 11, 3, 11, 1, 45, 3, 45, 3, 3, 1, 113, 1, 3, 11, 188, 3, 19, 1, 11, 3, 19, 1, 345, 1, 3, 11, 11, 3
Offset: 1
In this scheme, the following factorizations of 12 are counted as distinct: 12, 2 x 6, 2 x (2 x 3), 2 x (3 x 2), 3 x 4, 3 x (2 x 2), 4 x 3, (2 x 2) x 3, 6 x 2, (2 x 3) x 2, (3 x 2) x 2, thus a(12) = 11. - _Antti Karttunen_, Nov 02 2016, based on the illustration given at page 14 of Knopfmacher & Mays paper.
The following factorizations of 30 are counted as distinct: 30, 2 x 15, 15 x 2, 3 x 10, 10 x 3, 5 x 6, 6 x 5, 2 x (3 x 5), 2 x (5 x 3), 3 x (2 x 5), 3 x (5 x 2), 5 x (2 x 3), 5 x (3 x 2), (2 x 3) x 5, (2 x 5) x 3, (3 x 2) x 5, (3 x 5) x 2, (5 x 2) x 3, (5 x 3) x 2, thus a(30) = 19. - _Antti Karttunen_, Jan 02 2024
- Daniel Mondot, Table of n, a(n) for n = 1..9999
- H.-K. Hwang, Théorèmes limites pour les structures combinatoires et les fonctions arithmétiques, PhD thesis, in Ecole Polytechnique, 1994. See page 198.
- A. Knopfmacher, M. E. Mays, A survey of factorization counting functions, International Journal of Number Theory, 1(4):563-581,(2005). See page 14.
- Index entries for sequences computed from exponents in factorization of n
After n=1 differs from
A104725 for the next time at n=32, where a(32) = 51, while
A104725(32) = 52.
-
#include
#define MAX 10000
/* Number of branching factorizations of n. */
unsigned long n, m, a, b, p, x, nbr[MAX];
int main(void)
{
for (x=n=1; nDaniel Mondot, Oct 01 2016 */
-
v[n_] := v[n] = If[n == 1, 0, 1 + Sum[If[d == 1 || d^2 > n, 0, If[d^2 == n, 1, 2]*v[d]*v[n/d]], {d, Divisors[n]}]]; Table[v[n], {n, 1, 100}] (* Vaclav Kotesovec, Jan 13 2024, after Antti Karttunen *)
-
A277120(n) = if(1==n, 0, 1+sumdiv(n, d, if((1==d)||(d*d)>n,0,if((d*d)==n,1,2)*A277120(d)*A277120(n/d)))); \\ Antti Karttunen, Nov 02 2016, after Daniel Mondot's C-program above.
-
seq(n)={my(v=vector(n)); for(n=2, n, v[n] = 1 + sumdiv(n, d, v[d]*v[n/d])); v} \\ Andrew Howroyd, Nov 17 2018
A290110
a(n) = the discovery rank of the factorization pattern of the sequence of divisors of n.
Original entry on oeis.org
1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 8, 2, 9, 4, 4, 2, 10, 3, 4, 5, 9, 2, 11, 2, 12, 4, 4, 4, 13, 2, 4, 4, 14, 2, 15, 2, 9, 6, 4, 2, 16, 3, 8, 4, 9, 2, 17, 4, 14, 4, 4, 2, 18, 2, 4, 6, 19, 4, 15, 2, 9, 4, 11, 2, 20, 2, 4, 8, 9, 4, 15, 2, 21, 7, 4, 2, 22, 4, 4, 4, 23, 2, 24, 4, 9, 4, 4, 4, 25, 2, 8, 9, 26, 2, 15, 2, 23, 11
Offset: 1
The divisors of 17 are {1, 17}. They follow the pattern {1, p} which is pattern number 2 in discovery order. a(17)=2.
The divisors of 28 are {1, 2, 4, 7, 14, 28}. They follow the pattern {1, p, p^2, q, p*q, p^2*q}, which is pattern number 9 in discovery order. a(28)=9.
From _Michael De Vlieger_ and _Antti Karttunen_, Mar 07 & 08 2018: (Start)
Divisors of 462 = 2*3*7*11 (p=2, q=3, r=7, s=11) are 1, 2, 3, 6, 7, 11, 14, 21, 22, 33, 42, 66, 77, 154, 231, 462, thus the factorization patterns in the order of increasing divisors are: 1, p, q, pq, r, s, pr, qr, ps, qs, pqr, pqs, rs, prs, qrs and pqrs.
Divisors of 546 = 2*3*7*13 (p=2, q=3, r=7, s=13) are 1, 2, 3, 6, 7, 13, 14, 21, 26, 39, 42, 78, 91, 182, 273, 546, thus the factorization patterns are 1, p, q, pq, r, s, pr, qr, ps, qs, pqr, pqs, rs, prs, qrs and pqrs, that is, identical with those of 462, thus a(546) = a(462).
Divisors of 858 = 2*3*11*13 (p=2, q=3, r=11, s=13) are 1, 2, 3, 6, 11, 13, 22, 26, 33, 39, 66, 78, 143, 286, 429, 858, thus the factorization patterns are 1, p, q, pq, r, s, pr, ps, qr, qs, pqr, pqs, rs, prs, qrs and pqrs. At the 8th divisor (26), we see that pattern ps is different from pattern qr of the 8th divisor of 546 (21), thus a(858) is not equal to a(546).
(End)
-
FactorizationPattern[n_] := Module[
{pn, fd, f1, f2, d},
pn = First /@ FactorInteger[n];
fd = FactorInteger[ReplacePart[Divisors[n], 1 -> {}]];
f1 = (ReplacePart[#,
1 -> FromCharacterCode[
111 + First[Position[pn, First[#]]]]]) &;
f2 = (f1 /@ #) &;
fd = f2 /@ fd;
f1 = (Power[First[#], Last[#]]) &;
For[i = 1, i <= Length[fd], i++,
d = fd[[i]];
For[j = 1, j <= Length[d], j++,d[[j]] = f1[d[[j]]];];
d = Product[x, {x, d}];
fd[[i]] = d;
];
fd
]
ListFactorizationPatternIndices[n_] := Module[
{mem, k, i, p, a},
mem = Association[];
a = {}; k = 0;
For[i = 1, i \[LessSlantEqual] n, i++,
p = FactorizationPattern[i];
If[KeyExistsQ[mem, p],,
k++;
mem = Append[mem, p -> k]
];
a = Append[a, mem[p]]
];
a
]
ListFactorizationPatternIndices[80]
(* or *)
f[n_] := If[n==1, 1, Block[{p = First /@ FactorInteger@n, z,x}, z= Table[p[[i]] -> x[i], {i, Length@p}]; Times @@ (((#[[1]] /. z)^#[[2]]) & /@ FactorInteger@ #) & /@ Divisors[n]]]; A = <||>; Table[k = f[n]; If[ KeyExistsQ[A, k], A[k], t = 1 + Length@A; A[k] = t], {n, 80}] (* Giovanni Resta, Jul 20 2017 *)
Comments