cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 37 results. Next

A179451 Decimal expansion of the surface area of an icosidodecahedron with side length 1.

Original entry on oeis.org

2, 9, 3, 0, 5, 9, 8, 2, 8, 4, 4, 9, 1, 1, 9, 8, 9, 5, 4, 0, 7, 4, 5, 3, 7, 5, 4, 3, 6, 1, 9, 2, 6, 7, 7, 0, 2, 7, 6, 0, 2, 5, 1, 6, 3, 0, 9, 1, 7, 4, 2, 8, 3, 0, 9, 0, 7, 6, 4, 1, 7, 1, 3, 8, 1, 5, 4, 6, 0, 9, 2, 9, 9, 1, 0, 5, 1, 5, 9, 4, 9, 6, 1, 3, 9, 5, 0, 2, 5, 8, 3, 0, 4, 3, 7, 2, 9, 5, 7, 6, 4, 3, 0, 4, 6
Offset: 2

Views

Author

Keywords

Comments

Icosidodecahedron: 32 faces, 30 vertices, and 60 edges.

Examples

			29.3059828449119895407453754361926770276025163091742830907641713815460...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[30*(10+3*Sqrt[5]+Sqrt[75+30*Sqrt[5]])],200]]
  • PARI
    polrootsreal(x^8 - 1200*x^6 + 324000*x^4 - 27000000*x^2 + 324000000)[8] \\ Charles R Greathouse IV, Oct 30 2023

Formula

Sqrt(30*(10+3*sqrt(5)+sqrt(75+30*sqrt(5))))

Extensions

Partially rewritten by Charles R Greathouse IV, Feb 03 2011

A179450 Decimal expansion of the volume of an icosidodecahedron with edge length 1.

Original entry on oeis.org

1, 3, 8, 3, 5, 5, 2, 5, 9, 3, 6, 2, 4, 9, 4, 0, 4, 1, 3, 9, 8, 2, 5, 9, 9, 2, 0, 6, 1, 4, 0, 5, 2, 8, 2, 6, 6, 7, 0, 8, 1, 7, 5, 2, 0, 1, 8, 8, 9, 9, 3, 2, 2, 8, 8, 5, 4, 3, 4, 2, 0, 8, 8, 6, 1, 9, 9, 6, 4, 7, 5, 9, 5, 5, 9, 7, 3, 7, 8, 0, 5, 4, 8, 3, 4, 0, 8, 4, 0, 8, 2, 3, 7, 3, 9, 8, 8, 3, 1, 1, 2, 4, 1, 3, 6
Offset: 2

Views

Author

Keywords

Comments

Icosidodecahedron: 32 faces, 30 vertices, and 60 edges.

Examples

			13.83552593624940413982599206140528266708175201889932288543420886199647...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(45+17*Sqrt[5])/6,200]]
  • PARI
    (45 + 17*sqrt(5))/6 \\ Charles R Greathouse IV, Oct 30 2023

Formula

(45 + 17*sqrt(5))/6.

Extensions

Partially rewritten by Charles R Greathouse IV, Feb 03 2011

A020829 Decimal expansion of 1/sqrt(72) = 1/(3*2^(3/2)) = sqrt(2)/12.

Original entry on oeis.org

1, 1, 7, 8, 5, 1, 1, 3, 0, 1, 9, 7, 7, 5, 7, 9, 2, 0, 7, 3, 3, 4, 7, 4, 0, 6, 0, 3, 5, 0, 8, 0, 8, 1, 7, 3, 2, 1, 4, 1, 3, 9, 3, 2, 2, 9, 4, 8, 0, 7, 9, 0, 0, 6, 0, 9, 8, 0, 5, 6, 6, 4, 4, 8, 3, 2, 5, 6, 1, 0, 3, 9, 8, 7, 1, 8, 4, 2, 2, 5, 3, 2, 3, 7, 5, 3, 2, 2, 9, 4, 5, 2, 7, 3, 0, 3, 4, 6, 4
Offset: 0

Views

Author

Keywords

Comments

Volume of regular tetrahedron with unit edge. - Stanislav Sykora, May 31 2012
In the dragon curve fractal, (5/6)*sqrt(2) = 1.1785.... is the maximum distance of any point from curve start. Such a maximum must be to a vertex of the convex hull. Hull vertices are shown by Benedek and Panzone (theorem 3, page 85) and their P8 = 7/6 - (1/6)i at distance sqrt((7/6)^2 + (1/6)^2) is the maximum. - Kevin Ryde, Nov 22 2019
With offset 1, volume of a triangular cupola (Johnson solid J_3) with unit edges. - Paolo Xausa, Aug 04 2025

Examples

			0.117851130197757920733474...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. A131594 (regular octahedron volume), A102208 (regular icosahedron volume), A102769 (regular dodecahedron volume).

Programs

Formula

Equals Integral_{x=0..Pi/4} sin(x)^2 * cos(x) dx. - Amiram Eldar, May 31 2021
Equals 1/A010524 = A020765/3 = A020775/2 = A378207/5. - Hugo Pfoertner, Jan 26 2025

A179590 Decimal expansion of the volume of pentagonal cupola with edge length 1.

Original entry on oeis.org

2, 3, 2, 4, 0, 4, 5, 3, 1, 8, 3, 3, 3, 1, 9, 3, 1, 3, 0, 9, 3, 9, 4, 4, 9, 1, 1, 2, 4, 8, 7, 5, 1, 7, 4, 9, 0, 2, 9, 3, 7, 4, 5, 5, 7, 3, 0, 7, 4, 3, 5, 0, 4, 8, 2, 8, 4, 7, 2, 6, 4, 8, 3, 0, 2, 7, 3, 6, 8, 0, 6, 1, 7, 0, 9, 1, 8, 6, 9, 9, 3, 2, 9, 4, 2, 9, 4, 2, 9, 3, 8, 9, 1, 9, 1, 8, 8, 1, 8, 3, 3, 1, 3, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Pentagonal cupola: 15 vertices, 25 edges, and 12 faces.

Examples

			2.32404531833319313093944911248751749029374557307435048284726483027368...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(5+4*Sqrt[5])/6,200]]

Formula

Digits of (5+4*sqrt(5))/6.

A131594 Decimal expansion of sqrt(2)/3, the volume of a regular octahedron with edge length 1.

Original entry on oeis.org

4, 7, 1, 4, 0, 4, 5, 2, 0, 7, 9, 1, 0, 3, 1, 6, 8, 2, 9, 3, 3, 8, 9, 6, 2, 4, 1, 4, 0, 3, 2, 3, 2, 6, 9, 2, 8, 5, 6, 5, 5, 7, 2, 9, 1, 7, 9, 2, 3, 1, 6, 0, 2, 4, 3, 9, 2, 2, 2, 6, 5, 7, 9, 3, 3, 0, 2, 4, 4, 1, 5, 9, 4, 8, 7, 3, 6, 9, 0, 1, 2, 9, 5, 0, 1, 2, 9, 1, 7, 8, 1, 0, 9, 2, 1, 3, 8, 5, 7, 5, 7, 8, 3, 3, 7
Offset: 0

Views

Author

Omar E. Pol, Aug 30 2007

Keywords

Comments

Volume of a regular octahedron: V = ((sqrt(2))/3)* a^3, where 'a' is the edge.

Examples

			0.471404520791031682933896...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. A020829 (regular tetrahedron volume), A102208 (regular icosahedron volume), A102769 (regular dodecahedron volume).
Cf. A179587.

Programs

Formula

Equals A002193/3 = A010464/A010482. - R. J. Mathar, Dec 11 2009

Extensions

More digits from R. J. Mathar, Dec 11 2009

A179553 Decimal expansion of the surface area of pentagonal pyramid with edge length 1.

Original entry on oeis.org

3, 8, 8, 5, 5, 4, 0, 9, 1, 0, 0, 5, 0, 0, 6, 3, 5, 3, 9, 6, 6, 8, 3, 1, 9, 9, 0, 4, 2, 7, 0, 9, 5, 0, 0, 5, 8, 0, 8, 5, 8, 8, 0, 7, 3, 7, 2, 7, 3, 1, 7, 4, 1, 1, 4, 2, 7, 6, 8, 5, 3, 4, 3, 1, 3, 3, 8, 7, 8, 5, 2, 6, 3, 3, 4, 4, 9, 6, 6, 2, 7, 7, 6, 8, 3, 8, 7, 3, 9, 7, 4, 8, 3, 4, 1, 4, 8, 4, 6, 0, 0, 8, 8, 4, 0
Offset: 1

Views

Author

Keywords

Comments

Pentagonal pyramid: 6 faces, 6 vertices, and 10 edges.

Examples

			3.885540910050063539668319904270950058085880737273174114276853431338785...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[5/2*(10+Sqrt[5]+Sqrt[75+30*Sqrt[5]])]/2,200]]

Formula

Digits of sqrt(5/2*(10+sqrt(5)+sqrt(75+30sqrt(5))))/2.

A179296 Decimal expansion of circumradius of a regular dodecahedron with edge length 1.

Original entry on oeis.org

1, 4, 0, 1, 2, 5, 8, 5, 3, 8, 4, 4, 4, 0, 7, 3, 5, 4, 4, 6, 7, 6, 6, 7, 7, 9, 3, 5, 3, 2, 2, 0, 6, 7, 9, 9, 4, 4, 4, 3, 9, 3, 1, 7, 3, 9, 7, 7, 5, 4, 9, 2, 8, 6, 3, 6, 6, 0, 8, 4, 5, 1, 8, 6, 3, 9, 1, 3, 5, 4, 0, 2, 7, 2, 1, 1, 4, 4, 4, 7, 6, 7, 6, 5, 0, 1, 0, 8, 3, 9, 0, 9, 0, 3, 9, 8, 0, 5, 2, 3, 3, 9, 7, 9, 8
Offset: 1

Views

Author

Keywords

Comments

Dodecahedron: A three-dimensional figure with 12 faces, 20 vertices, and 30 edges.
Appears as a coordinate in a degree-7 quadrature formula on 12 points over the unit circle [Stroud & Secrest]. - R. J. Mathar, Oct 12 2011

Examples

			1.40125853844407354467667793532206799444393173977549286366084518639135...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 451.

Crossrefs

Cf. Platonic solids circumradii: A010503 (octahedron), A010527 (cube), A019881 (icosahedron), A187110 (tetrahedron). - Stanislav Sykora, Feb 10 2014

Programs

  • Mathematica
    RealDigits[(Sqrt[3]+Sqrt[15])/4, 10, 175][[1]]
  • PARI
    (1+sqrt(5))*sqrt(3)/4 \\ Stefano Spezia, Jan 27 2025

Formula

Equals (sqrt(3) + sqrt(15))/4 = sqrt((9 + 3*sqrt(5))/8).
The minimal polynomial is 16*x^4 - 36*x^2 + 9. - Joerg Arndt, Feb 05 2014
Equals (sqrt(3)/2) * phi = A010527 * A001622. - Amiram Eldar, Jun 02 2023

A179591 Decimal expansion of the surface area of pentagonal cupola with edge length 1.

Original entry on oeis.org

1, 6, 5, 7, 9, 7, 4, 9, 7, 5, 2, 9, 8, 8, 1, 9, 7, 0, 4, 6, 0, 9, 4, 0, 4, 6, 3, 4, 4, 3, 6, 3, 2, 2, 4, 6, 1, 8, 1, 0, 2, 6, 3, 6, 0, 9, 6, 1, 1, 7, 6, 5, 5, 1, 8, 1, 8, 7, 4, 7, 4, 4, 0, 5, 7, 2, 7, 5, 9, 4, 3, 4, 8, 4, 5, 8, 2, 6, 9, 3, 5, 7, 3, 8, 2, 0, 3, 5, 8, 2, 7, 9, 0, 0, 1, 9, 1, 2, 0, 4, 8, 2, 6, 8, 1
Offset: 2

Views

Author

Keywords

Comments

Pentagonal cupola: 15 vertices, 25 edges, and 12 faces.

Examples

			16.5797497529881970460940463443632246181026360961176551818747440...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(20+Sqrt[10*(80+31*Sqrt[5]+Sqrt[2175+930*Sqrt[5]])])/4,200]]

Formula

Digits of (20+sqrt(10*(80+31*sqrt(5)+sqrt(2175+930*sqrt(5)))))/4.

A179588 Decimal expansion of the surface area of square cupola with edge length 1.

Original entry on oeis.org

1, 1, 5, 6, 0, 4, 7, 7, 9, 3, 2, 3, 1, 5, 0, 6, 7, 3, 9, 1, 1, 3, 0, 8, 2, 3, 7, 8, 9, 9, 2, 5, 2, 6, 8, 5, 2, 4, 0, 8, 2, 1, 4, 9, 0, 0, 4, 5, 6, 4, 2, 7, 6, 7, 7, 4, 4, 0, 9, 1, 6, 6, 4, 5, 5, 4, 3, 3, 3, 9, 7, 9, 7, 3, 8, 3, 3, 0, 1, 4, 1, 1, 4, 7, 8, 1, 9, 2, 1, 2, 5, 5, 4, 1, 2, 5, 3, 1, 7, 2, 1, 1, 4, 5, 6
Offset: 2

Views

Author

Keywords

Comments

Square cupola: 12 vertices, 20 edges, and 10 faces.

Examples

			11.56047793231506739113082378992526852408214900456427677440...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[7+2*Sqrt[2]+Sqrt[3],200]]

Formula

Digits of 7 + 2*sqrt(2) + sqrt(3).

A232809 Decimal expansion of the surface index of a regular icosahedron.

Original entry on oeis.org

5, 1, 4, 8, 3, 4, 8, 5, 5, 6, 1, 9, 9, 5, 1, 5, 6, 4, 6, 3, 3, 0, 8, 1, 2, 9, 4, 6, 1, 1, 6, 0, 1, 9, 0, 6, 4, 1, 0, 0, 8, 6, 4, 1, 1, 6, 3, 8, 6, 7, 2, 4, 1, 4, 8, 4, 5, 0, 7, 1, 3, 6, 7, 5, 3, 9, 8, 0, 3, 2, 4, 7, 9, 0, 5, 0, 8, 5, 7, 7, 1, 3, 0, 2, 9, 8, 3, 7, 3, 2, 5, 6, 2, 9, 9, 4, 3, 1, 0, 9, 6, 7, 4, 0, 0
Offset: 1

Views

Author

Stanislav Sykora, Dec 01 2013

Keywords

Comments

Equivalently, surface area of a regular icosahedron with unit volume. Among Platonic solids, surface indices decrease with increasing number of faces: A232812 (tetrahedron), 6.0 (cube = hexahedron), A232811 (octahedron), A232810 (dodecahedron), and this one.
An algebraic integer of degree 12 with minimal polynomial x^12 - 41115600x^6 + 765275040000. - Charles R Greathouse IV, Apr 25 2016

Examples

			5.14834855619951564633081294611601906410086411638672414845...
		

Crossrefs

Cf. A010527, A102208 (solid index of a sphere), A232808, A232810, A232811, A232812.

Programs

  • Mathematica
    RealDigits[5*Sqrt[3]/(5*(3+Sqrt[5])/12)^(2/3), 10, 120][[1]] (* Amiram Eldar, May 25 2023 *)
  • PARI
    5*sqrt(3)/(5*(3+sqrt(5))/12)^(2/3) \\ Charles R Greathouse IV, Apr 25 2016

Formula

Equals 5*sqrt(3)/(5*(3+sqrt(5))/12)^(2/3).
Equals 10*A010527/A102208^(2/3).
Previous Showing 11-20 of 37 results. Next