cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 90 results. Next

A349052 Number of weakly alternating compositions of n.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 28, 52, 91, 161, 280, 491, 850, 1483, 2573, 4469, 7757, 13472, 23378, 40586, 70438, 122267, 212210, 368336, 639296, 1109620, 1925916, 3342755, 5801880, 10070133, 17478330, 30336518, 52653939, 91389518, 158621355, 275313226, 477850887, 829388075
Offset: 0

Views

Author

Gus Wiseman, Nov 29 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. A sequence is alternating iff it is a weakly alternating anti-run.

Examples

			The a(5) = 16 compositions:
  (1,1,1,1,1)  (1,1,1,2)  (1,1,3)  (1,4)  (5)
               (1,1,2,1)  (1,2,2)  (2,3)
               (1,2,1,1)  (1,3,1)  (3,2)
               (2,1,1,1)  (2,1,2)  (4,1)
                          (2,2,1)
                          (3,1,1)
The a(6) = 28 compositions:
  (111111)  (11112)  (1113)  (114)  (15)  (6)
            (11121)  (1122)  (132)  (24)
            (11211)  (1131)  (141)  (33)
            (12111)  (1212)  (213)  (42)
            (21111)  (1311)  (222)  (51)
                     (2121)  (231)
                     (2211)  (312)
                     (3111)  (411)
		

Crossrefs

The strong case is A025047, ranked by A345167.
The directed versions are A129852 and A129853, strong A025048 and A025049.
The complement is counted by A349053, strong A345192.
The version for permutations of prime indices is A349056, strong A345164.
The complement is ranked by A349057, strong A345168.
The version for patterns is A349058, strong A345194.
The multiplicative version is A349059, strong A348610.
An unordered version (partitions) is A349060, complement A349061.
The non-alternating case is A349800, ranked by A349799.
A001250 counts alternating permutations, complement A348615.
A001700 counts compositions of 2n with alternating sum 0.
A003242 counts Carlitz (anti-run) compositions.
A011782 counts compositions.
A106356 counts compositions by number of maximal anti-runs.
A344604 counts alternating compositions with twins.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A349054 counts strict alternating compositions.

Programs

  • Mathematica
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],whkQ[#]||whkQ[-#]&]],{n,0,10}]
  • PARI
    C(n,f)={my(M=matrix(n,n,j,k,k>=j), s=M[,n]); for(b=1, n, f=!f; M=matrix(n,n,j,k, if(k1,M[j-k,k-1]) ))); for(k=2, n, M[,k]+=M[,k-1]); s+=M[,n]); s~}
    seq(n) = concat([1], C(n,0) + C(n,1) - vector(n,j,numdiv(j))) \\ Andrew Howroyd, Jan 31 2024

Extensions

a(21)-a(37) from Martin Ehrenstein, Jan 08 2022

A348610 Number of alternating ordered factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 6, 1, 3, 3, 4, 1, 6, 1, 6, 3, 3, 1, 12, 1, 3, 3, 6, 1, 11, 1, 7, 3, 3, 3, 15, 1, 3, 3, 12, 1, 11, 1, 6, 6, 3, 1, 23, 1, 6, 3, 6, 1, 12, 3, 12, 3, 3, 1, 28, 1, 3, 6, 12, 3, 11, 1, 6, 3, 11, 1, 33, 1, 3, 6, 6, 3, 11, 1, 23, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 05 2021

Keywords

Comments

An ordered factorization of n is a finite sequence of positive integers > 1 with product n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The alternating ordered factorizations of n = 1, 6, 12, 16, 24, 30, 32, 36:
  ()   6     12      16      24      30      32      36
       2*3   2*6     2*8     3*8     5*6     4*8     4*9
       3*2   3*4     8*2     4*6     6*5     8*4     9*4
             4*3     2*4*2   6*4     10*3    16*2    12*3
             6*2             8*3     15*2    2*16    18*2
             2*3*2           12*2    2*15    2*8*2   2*18
                             2*12    3*10    4*2*4   3*12
                             2*4*3   2*5*3           2*6*3
                             2*6*2   3*2*5           2*9*2
                             3*2*4   3*5*2           3*2*6
                             3*4*2   5*2*3           3*4*3
                             4*2*3                   3*6*2
                                                     6*2*3
                                                     2*3*2*3
                                                     3*2*3*2
		

Crossrefs

The additive version (compositions) is A025047 ranked by A345167.
The complementary additive version is A345192, ranked by A345168.
Dominated by A348611 (the anti-run version) at positions A122181.
The complement is counted by A348613.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations, complement A348615.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A345165 counts partitions w/o an alternating permutation, ranked by A345171.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A347463 counts ordered factorizations with integer alternating product.
A348379 counts factorizations w/ an alternating permutation.
A348380 counts factorizations w/o an alternating permutation.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]] == Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[ordfacs[n],wigQ]],{n,100}]

A333175 If n = Product (p_j^k_j) then a(n) = Sum (a(n/p_j^k_j)), with a(1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 6, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 6, 1, 2, 2, 1, 2, 6, 1, 2, 2, 6, 1, 2, 1, 2, 2, 2, 2, 6, 1, 2, 1, 2, 1, 6, 2, 2, 2, 2, 1, 6, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 11 2020

Keywords

Comments

Number of ordered prime factorizations of radical of n.
Number of permutations of the prime indices of n (counting multiplicity) avoiding the patterns (1,2,1) and (2,1,2). These are permutations with all equal parts contiguous. Depends only on sorted prime signature (A118914). - Gus Wiseman, Jun 27 2020

Examples

			From _Gus Wiseman_, Jun 27 2020 (Start)
The a(n) permutations of prime indices for n = 2, 12, 60:
  (1)  (112)  (1123)
       (211)  (1132)
              (2113)
              (2311)
              (3112)
              (3211)
(End)
		

Crossrefs

Dominates A335451.
Permutations of prime indices are A008480.
Unsorted prime signature is A124010. Sorted prime signature is A118914.
(1,2,1)-avoiding permutations of prime indices are A335449.
(2,1,2)-avoiding permutations of prime indices are A335450.
(1,2,1) or (2,1,2)-matching permutations of prime indices are A335460.
(1,2,1) and (2,1,2)-matching permutations of prime indices are A335462.

Programs

  • Maple
    f:= n -> nops(numtheory:-factorset(n))!:
    map(f, [$1..100]); # Robert Israel, Mar 12 2020
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Plus @@ (a[n/#[[1]]^#[[2]]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 100}]
    a[1] = 1; a[n_] := a[n] = Sum[If[GCD[n/d, d] == 1 && d < n, Boole[PrimePowerQ[n/d]] a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 100}]
    Table[PrimeNu[n]!, {n, 1, 100}]

Formula

a(1) = 1; a(n) = Sum_{d|n, d < n, gcd(d, n/d) = 1} A069513(n/d) * a(d).
a(n) = A000142(A001221(n)).

A335460 Number of (1,2,1) or (2,1,2)-matching permutations of the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 6, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 8, 0, 0, 1, 1, 0, 0, 0, 3, 0, 0, 0, 6, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2020

Keywords

Comments

Depends only on sorted prime signature (A118914).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(n) compositions for n = 12, 24, 48, 36, 60, 72:
  (121)  (1121)  (11121)  (1212)  (1213)  (11212)
         (1211)  (11211)  (1221)  (1231)  (11221)
                 (12111)  (2112)  (1312)  (12112)
                          (2121)  (1321)  (12121)
                                  (2131)  (12211)
                                  (3121)  (21112)
                                          (21121)
                                          (21211)
		

Crossrefs

Positions of zeros are A303554.
The (1,2,1)-matching part is A335446.
The (2,1,2)-matching part is A335453.
Replacing "or" with "and" gives A335462.
Permutations of prime indices are counted by A008480.
Unsorted prime signature is A124010. Sorted prime signature is A118914.
STC-numbers of permutations of prime indices are A333221.
(1,2,1) and (2,1,2)-avoiding permutations of prime indices are A333175.
Patterns matched by standard compositions are counted by A335454.
(1,2,1) and (2,1,2)-matching permutations of prime indices are A335462.
Dimensions of downsets of standard compositions are A335465.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],MatchQ[#,{_,x_,_,y_,_,x_,_}/;x!=y]&]],{n,100}]

A335515 Number of patterns of length n matching the pattern (1,2,3).

Original entry on oeis.org

0, 0, 0, 1, 19, 257, 3167, 38909, 498235, 6811453, 100623211, 1612937661, 28033056683, 526501880989, 10639153638795, 230269650097469, 5315570416909995, 130370239796988957, 3385531348514480651, 92801566389186549245, 2677687663571344712043, 81124824154544921317597
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2020

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(3) = 1 through a(4) = 19 patterns:
  (1,2,3)  (1,1,2,3)
           (1,2,1,3)
           (1,2,2,3)
           (1,2,3,1)
           (1,2,3,2)
           (1,2,3,3)
           (1,2,3,4)
           (1,2,4,3)
           (1,3,2,3)
           (1,3,2,4)
           (1,3,4,2)
           (1,4,2,3)
           (2,1,2,3)
           (2,1,3,4)
           (2,3,1,4)
           (2,3,4,1)
           (3,1,2,3)
           (3,1,2,4)
           (4,1,2,3)
		

Crossrefs

The complement A226316 is the avoiding version.
Compositions matching this pattern are counted by A335514 and ranked by A335479.
Permutations of prime indices matching this pattern are counted by A335520.
Patterns are counted by A000670 and ranked by A333217.
Patterns matching the pattern (1,1) are counted by A019472.
Permutations matching (1,2,3) are counted by A056986.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],MatchQ[#,{_,x_,_,y_,_,z_,_}/;x
    				
  • PARI
    seq(n)=Vec( serlaplace(1/(2-exp(x + O(x*x^n)))) - 1/2 - 1/(1+sqrt(1-8*x+8*x^2 + O(x*x^n))), -(n+1)) \\ Andrew Howroyd, Jan 28 2024

Formula

a(n) = A000670(n) - A226316(n). - Andrew Howroyd, Jan 28 2024

Extensions

a(9) onwards from Andrew Howroyd, Jan 28 2024

A335514 Number of (1,2,3)-matching compositions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 4, 14, 42, 114, 292, 714, 1686, 3871, 8696, 19178, 41667, 89386, 189739, 399144, 833290, 1728374, 3565148, 7319212, 14965880, 30496302, 61961380, 125577752, 253971555, 512716564, 1033496947, 2080572090, 4183940550, 8406047907, 16875834728
Offset: 0

Views

Author

Gus Wiseman, Jun 22 2020

Keywords

Examples

			The a(6) = 1 through a(8) = 14 compositions:
  (1,2,3)  (1,2,4)    (1,2,5)
           (1,1,2,3)  (1,3,4)
           (1,2,1,3)  (1,1,2,4)
           (1,2,3,1)  (1,2,1,4)
                      (1,2,2,3)
                      (1,2,3,2)
                      (1,2,4,1)
                      (2,1,2,3)
                      (1,1,1,2,3)
                      (1,1,2,1,3)
                      (1,1,2,3,1)
                      (1,2,1,1,3)
                      (1,2,1,3,1)
                      (1,2,3,1,1)
		

Crossrefs

The version for permutations is A056986.
The avoiding version is A102726.
These compositions are ranked by A335479.
The version for patterns is A335515.
The version for prime indices is A335520.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Patterns matched by compositions are counted by A335456.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,_,y_,_,z_,_}/;x
    				

Formula

a(n > 0) = 2^(n - 1) - A102726(n).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2020

A080599 Expansion of e.g.f.: 2/(2-2*x-x^2).

Original entry on oeis.org

1, 1, 3, 12, 66, 450, 3690, 35280, 385560, 4740120, 64751400, 972972000, 15949256400, 283232149200, 5416632421200, 110988861984000, 2425817682288000, 56333385828720000, 1385151050307024000, 35950878932544576000, 982196278209226080000, 28175806418228108640000
Offset: 0

Views

Author

Detlef Pauly (dettodet(AT)yahoo.de), Feb 24 2003

Keywords

Comments

Number of ordered partitions of {1,..,n} with at most 2 elements per block. - Bob Proctor, Apr 18 2005
In other words, number of preferential arrangements of n things (see A000670) in which each clump has size 1 or 2. - N. J. A. Sloane, Apr 13 2014
Recurrences (of the hypergeometric type of the Jovovic formula) mean: multiplying the sequence vector from the left with the associated matrix of the recurrence coefficients (here: an infinite lower triangular matrix with the natural numbers in the main diagonal and the triangular series in the subdiagonal) recovers the sequence up to an index shift. In that sense, this sequence here and many other sequences of the OEIS are eigensequences. - Gary W. Adamson, Feb 14 2011
Number of intervals in the weak (Bruhat) order of S_n that are Boolean algebras. - Richard Stanley, May 09 2011
a(n) = D^n(1/(1-x)) evaluated at x = 0, where D is the operator sqrt(1+2*x)*d/dx. Cf. A000085, A005442 and A052585. - Peter Bala, Dec 07 2011
From Gus Wiseman, Jul 04 2020: (Start)
Also the number of (1,1,1)-avoiding or cubefree sequences of length n covering an initial interval of positive integers. For example, the a(0) = 1 through a(3) = 12 sequences are:
() (1) (11) (112)
(12) (121)
(21) (122)
(123)
(132)
(211)
(212)
(213)
(221)
(231)
(312)
(321)
(End)

Examples

			From _Gus Wiseman_, Jul 04 2020: (Start)
The a(0) = 1 through a(3) = 12 ordered set partitions with block sizes <= 2 are:
  {}  {{1}}  {{1,2}}    {{1},{2,3}}
             {{1},{2}}  {{1,2},{3}}
             {{2},{1}}  {{1,3},{2}}
                        {{2},{1,3}}
                        {{2,3},{1}}
                        {{3},{1,2}}
                        {{1},{2},{3}}
                        {{1},{3},{2}}
                        {{2},{1},{3}}
                        {{2},{3},{1}}
                        {{3},{1},{2}}
                        {{3},{2},{1}}
(End)
		

Crossrefs

Column k=2 of A276921.
Cubefree numbers are A004709.
(1,1)-avoiding patterns are A000142.
(1,1,1)-avoiding compositions are A232432.
(1,1,1)-matching patterns are A335508.
(1,1,1)-avoiding permutations of prime indices are A335511.
(1,1,1)-avoiding compositions are ranked by A335513.
(1,1,1,1)-avoiding patterns are A189886.

Programs

  • Magma
    [n le 2 select 1 else (n-1)*Self(n-1) + Binomial(n-1,2)*Self(n-2): n in [1..31]]; // G. C. Greubel, Jan 31 2023
    
  • Maple
    a:= n-> n! *(Matrix([[1,1], [1/2,0]])^n)[1,1]:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 01 2009
    a:= gfun:-rectoproc({a(n) = n*a(n-1)+(n*(n-1)/2)*a(n-2),a(0)=1,a(1)=1},a(n),remember):
    seq(a(n), n=0..40); # Robert Israel, Nov 01 2015
  • Mathematica
    Table[n!*SeriesCoefficient[-2/(-2+2*x+x^2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
    Round@Table[n! ((1+Sqrt[3])^(n+1) - (1-Sqrt[3])^(n+1))/(2^(n+1) Sqrt[3]), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 31 2015 *)
  • PARI
    Vec(serlaplace((2/(2-2*x-x^2) + O(x^30)))) \\ Michel Marcus, Nov 02 2015
    
  • SageMath
    A002605=BinaryRecurrenceSequence(2,2,0,1)
    def A080599(n): return factorial(n)*A002605(n+1)/2^n
    [A080599(n) for n in range(41)] # G. C. Greubel, Jan 31 2023

Formula

a(n) = n*a(n-1) + (n*(n-1)/2)*a(n-2). - Vladeta Jovovic, Aug 22 2003
E.g.f.: 1/(1-x-x^2/2). - Richard Stanley, May 09 2011
a(n) ~ n!*((1+sqrt(3))/2)^(n+1)/sqrt(3). - Vaclav Kotesovec, Oct 13 2012
a(n) = n!*((1+sqrt(3))^(n+1) - (1-sqrt(3))^(n+1))/(2^(n+1)*sqrt(3)). - Vladimir Reshetnikov, Oct 31 2015
a(n) = A090932(n) * A002530(n+1). - Robert Israel, Nov 01 2015

A128695 Number of compositions of n with parts in N which avoid the adjacent pattern 111.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 24, 46, 89, 170, 324, 618, 1183, 2260, 4318, 8249, 15765, 30123, 57556, 109973, 210137, 401525, 767216, 1465963, 2801115, 5352275, 10226930, 19541236, 37338699, 71345449, 136324309, 260483548, 497722578, 951030367
Offset: 0

Views

Author

Ralf Stephan, May 08 2007

Keywords

Examples

			From _Gus Wiseman_, Jul 06 2020: (Start)
The a(0) = 1 through a(5) = 13 compositions:
  ()  (1)  (2)    (3)    (4)      (5)
           (1,1)  (1,2)  (1,3)    (1,4)
                  (2,1)  (2,2)    (2,3)
                         (3,1)    (3,2)
                         (1,1,2)  (4,1)
                         (1,2,1)  (1,1,3)
                         (2,1,1)  (1,2,2)
                                  (1,3,1)
                                  (2,1,2)
                                  (2,2,1)
                                  (3,1,1)
                                  (1,1,2,1)
                                  (1,2,1,1)
(End)
		

Crossrefs

Column k=0 of A232435.
The matching version is A335464.
Contiguously (1,1)-avoiding compositions is A003242.
Contiguously (1,1)-matching compositions are A261983.
Compositions with some part > 2 are A008466
Compositions by number of adjacent equal parts are A106356.
Compositions where each part is adjacent to an equal part are A114901.
Compositions with adjacent parts coprime are A167606.
Compositions with equal parts contiguous are A274174.
Patterns contiguously matched by compositions are A335457.
Patterns contiguously matched by a given partition are A335516.

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1, add(`if`(abs(t)<>j,
           b(n-j, j), `if`(t=-j, 0, b(n-j, -j))), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Nov 23 2013
  • Mathematica
    nn=33;CoefficientList[Series[1/(1-Sum[(x^i+x^(2i))/(1+x^i+x^(2i)),{i,1,nn}]),{x,0,nn}],x] (* Geoffrey Critzer, Nov 23 2013 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,x_,x_,_}]&]],{n,13}] (* Gus Wiseman, Jul 06 2020 *)

Formula

G.f.: 1/(1-Sum(i>=1, x^i*(1+x^i)/(1+x^i*(1+x^i)) ) ).
a(n) ~ c * d^n, where d is the root of the equation Sum_{k>=1} 1/(d^k + 1/(1 + d^k)) = 1, d=1.9107639262818041675000243699745706859615884029961947632387839..., c=0.4993008137128378086219448701860326113802027003939127932922782... - Vaclav Kotesovec, May 01 2014, updated Jul 07 2020
For n>=2, a(n) = A091616(n) + A003242(n). - Vaclav Kotesovec, Jul 07 2020

A188900 Number of compositions of n that avoid the pattern 12-3.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 31, 60, 114, 215, 402, 746, 1375, 2520, 4593, 8329, 15036, 27027, 48389, 86314, 153432, 271853, 480207, 845804, 1485703, 2603018, 4549521, 7933239, 13803293, 23966682, 41530721, 71830198, 124010381, 213725823, 367736268, 631723139, 1083568861
Offset: 0

Views

Author

Nathaniel Johnston, Apr 17 2011

Keywords

Comments

First differs from the non-dashed version A102726 at a(9) = 215, A102726(9) = 214, due to the composition (1,3,2,3).
The value a(11) = 7464 in Heubach et al. is a typo.
Theorem: A composition avoids 3-12 iff its leaders of maximal weakly decreasing runs are weakly increasing. For example, the composition q = (1,1,2,1,2,2,1,3) has maximal weakly decreasing runs ((1,1),(2,1),(2,2,1),(3)), with leaders (1,2,2,3), which are weakly increasing, so q is counted under a(13); also q avoids 3-12, as required. On the other hand, the composition q = (3,2,1,2,2,1,2) has maximal weakly decreasing runs ((3,2,1),(2,2,1),(2)), with leaders (3,2,2), which are not weakly increasing, so q is not counted under a(13); also q matches 3-12, as required. - Gus Wiseman, Aug 21 2024

Examples

			The initial terms are too dense, but see A375406 for the complement. - _Gus Wiseman_, Aug 21 2024
		

Crossrefs

The non-dashed version A102726, non-ranks A335483.
For 23-1 we have A189076.
The non-ranks are a subset of A335479 and do not include 404, 788, 809, ...
For strictly increasing leaders we have A358836, ranks A326533.
The strict version is A374762.
The complement is counted by A375406.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.

Programs

  • Maple
    with(PolynomialTools):n:=20:taypoly:=taylor(mul(1/(1 - x^i/mul(1-x^j,j=1..i-1)),i=1..n),x=0,n+1):seq(coeff(taypoly,x,m),m=0..n);
  • Mathematica
    m = 35;
    Product[1/(1 - x^i/Product[1 - x^j, {j, 1, i - 1}]), {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Mar 31 2020 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], LessEqual@@First/@Split[#,GreaterEqual]&]],{n,0,15}] (* Gus Wiseman, Aug 21 2024 *)

Formula

G.f.: Product_{i>=1} (1/(1 - x^i/Product_{j=1..i-1} (1 - x^j))).
a(n) = 2^(n-1) - A375406(n). - Gus Wiseman, Aug 22 2024

A335462 Number of (1,2,1) and (2,1,2)-matching permutations of the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(n) permutations for n = 36, 72, 270, 144, 300:
  (1,2,1,2)  (1,1,2,1,2)  (2,1,2,3,2)  (1,1,1,2,1,2)  (1,2,3,1,3)
  (2,1,2,1)  (1,2,1,1,2)  (2,1,3,2,2)  (1,1,2,1,1,2)  (1,3,1,2,3)
             (1,2,1,2,1)  (2,2,1,3,2)  (1,1,2,1,2,1)  (1,3,1,3,2)
             (2,1,1,2,1)  (2,2,3,1,2)  (1,2,1,1,1,2)  (1,3,2,1,3)
             (2,1,2,1,1)  (2,3,1,2,2)  (1,2,1,1,2,1)  (1,3,2,3,1)
                          (2,3,2,1,2)  (1,2,1,2,1,1)  (2,1,3,1,3)
                                       (2,1,1,1,2,1)  (2,3,1,3,1)
                                       (2,1,1,2,1,1)  (3,1,2,1,3)
                                       (2,1,2,1,1,1)  (3,1,2,3,1)
                                                      (3,1,3,1,2)
                                                      (3,1,3,2,1)
                                                      (3,2,1,3,1)
		

Crossrefs

The avoiding version is A333175.
Replacing "and" with "or" gives A335460.
Positions of nonzero terms are A335463.
Permutations of prime indices are counted by A008480.
Unsorted prime signature is A124010. Sorted prime signature is A118914.
STC-numbers of permutations of prime indices are A333221.
Patterns matched by standard compositions are counted by A335454.
Dimensions of downsets of standard compositions are A335465.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],MatchQ[#,{_,x_,_,y_,_,x_,_}/;x_,x_,_,y_,_,x_,_}/;x>y]&]],{n,100}]
Previous Showing 21-30 of 90 results. Next