cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A104657 Positive integers n such that n^19 + 1 is semiprime (A001358).

Original entry on oeis.org

2, 10, 28, 106, 190, 292, 556, 756, 858, 906, 1012, 1030, 1032, 1060, 1372, 1450, 1488, 1720, 1722, 1758, 1782, 1822, 1972, 2356, 2436, 2446, 2620, 2748, 2788, 2998, 3186, 3300, 3318, 3360, 3466, 3510, 3822, 3852, 4138, 4326, 4506, 4908, 5236, 5518, 5782
Offset: 1

Views

Author

Jonathan Vos Post, Apr 21 2005

Keywords

Comments

We have the polynomial factorization: n^19 + 1 = (n + 1) * (n^18 - n^17 + n^16 - n^15 + n^14 - n^13 + n^12 - n^11 + n^10 - n^9 + n^8 - n^7 + n^6 - n^5 + n^4 - n^3 + n^2 - n + 1). Hence after the initial n=1 prime the binomial can never be prime. It can be semiprime iff n+1 is prime and (n^18 - n^17 + n^16 - n^15 + n^14 - n^13 + n^12 - n^11 + n^10 - n^9 + n^8 - n^7 + n^6 - n^5 + n^4 - n^3 + n^2 - n + 1) is prime.

Examples

			2^19 + 1 = 524289 = 3 * 174763,
10^19 + 1 = 10000000000000000001 = 11 * 909090909090909091,
1012^19 + 1 = 125438178100868833265294241234853844232270960601988910249 = 1013 * 1238284087866424810121364671617510801898035149081825373.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [1..1100]|IsSemiprime(n^19+1)]; // Vincenzo Librandi, Mar 10 2015
  • Mathematica
    Select[Range[1000000], PrimeQ[# + 1] && PrimeQ[(#^19 + 1)/(# + 1)] &] (* Robert Price, Mar 10 2015 *)
    Select[Range[5800],PrimeOmega[#^19+1]==2&] (* Harvey P. Dale, Feb 15 2019 *)

Formula

a(n)^19 + 1 is semiprime (A001358).

Extensions

a(12)-a(45) from Robert Price, Mar 09 2015

A105282 Positive integers n such that n^20 + 1 is semiprime (A001358).

Original entry on oeis.org

2, 4, 46, 154, 266, 472, 748, 1434, 1738, 2058, 2204, 2222, 2428, 2478, 2510, 2866, 3132, 3288, 3576, 3688, 3756, 4142, 4506, 4940, 5164, 6252, 6330, 6786, 7180, 7300, 7338, 7416, 7628, 7806, 9270, 9312, 10044, 10722, 10860, 12126, 12422, 12668, 12998, 13350
Offset: 1

Views

Author

Jonathan Vos Post, Apr 25 2005

Keywords

Comments

We have the polynomial factorization: n^20 + 1 = (n^4 + 1) * (n^16 - n^12 + n^8 - n^4 + 1). Hence after the initial n=1 prime, the binomial can never be prime. It can be semiprime iff n^4+1 is prime and (n^16 - n^12 + n^8 - n^4 + 1) is prime.

Examples

			2^20 + 1 = 1048577 = 17 * 61681,
4^20 + 1 = 1099511627777 = 257 * 4278255361,
46^20 + 1 = 1799519816997495209117766334283777 = 4477457 * 401906666439788301510827761,
1434^20 + 1 =
1352019721694375552250489804528860551814233886722212960509362177 =
4228599998737 * 319732233386510278346888399489424537759394853595121.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [1..1000] | IsSemiprime(n^20+1)] // Vincenzo Librandi, Dec 21 2010
  • Mathematica
    Select[Range[1000000], PrimeQ[#^4 + 1] && PrimeQ[(#^20 + 1)/(#^4 + 1)] &] (* Robert Price, Mar 09 2015 *)

Formula

a(n)^20 + 1 is semiprime (A001358).

Extensions

a(9)-a(44) from Robert Price, Mar 09 2015

A261435 Numbers k such that k^5-1 is a semiprime.

Original entry on oeis.org

12, 24, 30, 44, 62, 68, 74, 110, 164, 198, 308, 492, 572, 594, 662, 728, 770, 824, 854, 860, 864, 942, 954, 968, 1152, 1154, 1284, 1382, 1452, 1668, 1694, 1748, 1760, 1788, 1914, 2090, 2252, 2274, 2340, 2382, 2438, 2448, 2648, 2658, 2664, 2690, 2714, 2790
Offset: 1

Views

Author

Vincenzo Librandi, Aug 20 2015

Keywords

Comments

Numbers k such that k-1 and k^4+k^3+k^2+k+1 are both prime.

Examples

			a(1) = 12 because 12^5-1 = 248831 = 11*22621.
		

Crossrefs

Cf. numbers k such that k^p-1 is a semiprime, where p is prime: A096175(p=3), this sequence (p=5), A261436 (p=7), A261460 (p=11).
Cf. A104238.

Programs

  • Magma
    IsSemiprime:=func; [n: n in [2..5000] | IsSemiprime(s) where s is n^5- 1];
    
  • Mathematica
    Select[Range[5000], PrimeOmega[#^5 - 1] == 2 &]
  • PARI
    isok(n)=bigomega(n^5-1)==2 \\ Anders Hellström, Aug 20 2015

A108868 Numbers n such that n^5 + 3 is semiprime.

Original entry on oeis.org

1, 2, 4, 6, 11, 14, 18, 19, 24, 31, 32, 38, 40, 46, 50, 55, 59, 70, 74, 76, 84, 92, 96, 100, 115, 119, 128, 139, 148, 150, 151, 154, 155, 158, 164, 178, 184, 200, 203, 204, 206, 210, 230, 236, 238, 239, 242, 248, 256, 263, 272, 278, 284, 295, 299, 304, 306, 310
Offset: 1

Author

Jonathan Vos Post, Jul 12 2005

Keywords

Comments

Note that n^5 + 3 is irreducible over integers, unlike n^5 + 1 as in A104238.

Examples

			1^5 + 3 = 4 = 2 * 2
2^5 + 3 = 35 = 5 * 7
4^5 + 3 = 1027 = 13 * 79
6^5 + 3 = 7779 = 3 * 2593
11^5 + 3 = 161054 = 2 * 80527
14^5 + 3 = 89 * 6043
100^5 + 3 = 10000000003 = 7 * 1428571429
1000^5 + 3 = 1000000000000003 = 14902357 * 67103479
1000000^5 + 3 = 1000000000000000000000000000003 = 1859827 * 537684419034673655130289.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) if bigomega(n^5+3)=2 then n else fi end: seq(a(n),n=1..400); # Emeric Deutsch, Jul 16 2005
  • Mathematica
    Select[Range[400],PrimeOmega[#^5+3]==2&] (* Harvey P. Dale, Jul 16 2017 *)

Extensions

More terms from Emeric Deutsch, Jul 16 2005

A186689 Numbers n such that n^4 + 1 is a semiprime.

Original entry on oeis.org

3, 5, 7, 8, 10, 11, 12, 13, 14, 17, 18, 21, 22, 23, 26, 29, 30, 32, 35, 36, 38, 39, 40, 42, 50, 52, 57, 58, 61, 62, 65, 68, 71, 72, 73, 78, 81, 84, 86, 92, 94, 98, 100, 102, 103, 105, 108, 112, 113, 114, 115, 116, 119, 120, 122, 124, 128, 129, 130, 138, 146, 148, 152, 153, 158
Offset: 1

Author

Michel Lagneau, Feb 25 2011

Keywords

Comments

Corresponding semiprimes n^4+1 are in A186688.

Examples

			3 is in the sequence because 3^4 + 1 = 82 = 2*41 is semiprime.
		

Programs

  • Mathematica
    SemiPrimeQ[ n_] := (n > 1) && (2 == Plus @@ (Transpose[FactorInteger[n]][[2]]));
      Select[Range[300], SemiPrimeQ[#^4 + 1] &]
    Select[Range[200],PrimeOmega[#^4+1]==2&] (* Harvey P. Dale, Jan 27 2013 *)

A276905 Numbers k such that k^5-1 and k^5+1 are semiprimes.

Original entry on oeis.org

12, 1452, 11352, 79398, 146520, 281622, 352110, 536778, 643302, 680988, 723492, 739200, 878988, 992112, 1115268, 1189650, 1397022, 1698378, 1698510, 1728540, 1806222, 2486220, 2873178, 3031578, 3571458, 3946140, 4467012, 4983858, 5064510, 5135658, 5567562, 5753352
Offset: 1

Author

Gary E. Davis, Sep 21 2016

Keywords

Crossrefs

Intersection of A104238 and A261435.

Programs

  • Mathematica
    upper=600000;
    Select[Range[upper],
    PrimeOmega[#^5 - 1] == PrimeOmega[#^5 + 1] == 2 &]
  • PARI
    isok(n) = (bigomega(n^5-1)==2) && (bigomega(n^5+1)==2); \\ Michel Marcus, Sep 22 2016

Extensions

More terms from Altug Alkan, Sep 30 2016

A330508 Numbers k such that k + 6^t is semiprime for t = 0 to 9.

Original entry on oeis.org

61273, 109441, 160213, 274501, 275473, 311593, 360673, 394201, 477181, 486061, 514993, 522085, 617137, 620053, 715477, 725485, 803833, 812677, 847117, 1063585, 1146913, 1182577, 1215865, 1232917, 1409425, 1508113, 1587241, 1768993, 1863073, 1895413, 2085517, 2095177
Offset: 1

Author

K. D. Bajpai, Dec 16 2019

Keywords

Comments

a(2620) = 530079693 is the first multiple of 3 in this sequence; there are no multiples of 2. - Charles R Greathouse IV, Dec 20 2019

Examples

			a(1) = 61273:
  61273 + 6^0  =    61274 =   2 *  30637;
  61273 + 6^1  =    61279 = 233 *    263;
  61273 + 6^2  =    61309 =  37 *   1657;
  61273 + 6^3  =    61489 =  17 *   3617;
  61273 + 6^4  =    62569 =  13 *   4813;
  61273 + 6^5  =    69049 =  29 *   2381;
  61273 + 6^6  =   107929 =  37 *   2917;
  61273 + 6^7  =   341209 =  11 *  31019;
  61273 + 6^8  =  1740889 = 197 *   8837;
  61273 + 6^9  = 10138969 =  89 * 113921;
all ten results are semiprime.
		

Crossrefs

Subsequence of A076274.

Programs

  • Magma
    f:=func; [k:k in [1..2100000]|forall{m:m in [0..9]|f(k+6^m)}]; // Marius A. Burtea, Dec 20 2019
    
  • Mathematica
    fX[n_] = PrimeOmega[n] == 2; Select[Range[2000000], AllTrue[# + 6^{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, fX] &]
  • PARI
    issemi(n)=bigomega(n)==2
    is(n)=for(t=0,9, if(!issemi(n+6^t), return(0))); 1 \\ Charles R Greathouse IV, Dec 20 2019

A105934 Positive integers n such that n^22 + 1 is semiprime (A001358).

Original entry on oeis.org

116, 176, 184, 300, 444, 470, 584, 690, 696, 950
Offset: 1

Author

Jonathan Vos Post, Apr 26 2005

Keywords

Comments

We have the polynomial factorization: n^22 + 1 = (n^2 + 1) * (n^20 - n^18 + n^16 - n^14 + n^12 - n^10 + n^8 - n^6 + n^4 - n^2 + 1). Hence after the initial n=1 prime, the binomial can never be prime. It can be semiprime iff n^2+1 is prime and (n^20 - n^18 + n^16 - n^14 + n^12 - n^10 + n^8 - n^6 + n^4 - n^2 + 1) is prime.

Examples

			116^22 + 1 = 2618639792014920380336685706161496723088736257 = 13457 * 194593133091693570657404005808240820620401,
300^22 + 1 = 3138105960900000000000000000000000000000000000000000001 = 90001 * 34867456593815624270841435095165609271008099910001,
950^22 + 1 = 323533544973709366507562922501564025878906250000000000000000000001 = 902501 * 358485525194663902319845543109164450653136395416736380347501.
		

Programs

  • Magma
    IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [2..1000] | IsSemiprime(n^22+1)]; // Vincenzo Librandi, Dec 21 2010
  • Mathematica
    Select[Range[1000], PrimeOmega[#^22 + 1]==2&] (* Vincenzo Librandi, May 24 2014 *)

Formula

a(n)^22 + 1 is in A001358. a(n)^2+1 is in A000040 and (a(n)^20 - a(n)^18 + a(n)^16 - a(n)^14 + a(n)^12 - a(n)^10 + a(n)^8 - a(n)^6 + a(n)^4 - a(n)^2 + 1) is in A000040.
Previous Showing 11-18 of 18 results.