cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A104373 Numbers m such that (A104350(m)-1, A104350(m)+1) is a twin prime pair.

Original entry on oeis.org

3, 4, 5, 6, 9, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Comments

No more terms < 2000. - David Wasserman, Apr 24 2008
a(7) > 5000, if it exists. - Amiram Eldar, Apr 08 2024

Examples

			a(5)=9: A104350(9) = 2*3*2*5*3*7*2*3 = 7560, A000040(959) = 7559 = 7560-1, A000040(960) = 7561 = 7560+1.
		

Crossrefs

Programs

A104354 Euler's totient of A104350(n).

Original entry on oeis.org

1, 1, 2, 4, 16, 48, 288, 576, 1728, 8640, 86400, 259200, 3110400, 21772800, 108864000, 217728000, 3483648000, 10450944000, 188116992000, 940584960000, 6584094720000, 72425041920000, 1593350922240000, 4780052766720000, 23900263833600000, 310703429836800000
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[FoldList[Times, Array[FactorInteger[#][[-1, 1]] &, 30]]] (* Amiram Eldar, Apr 08 2024 *)
  • PARI
    gpf(n) = my(f=factor(n)[, 1]); f[#f];
    a(n) = eulerphi(prod(i=2, n, gpf(i))); \\ Michel Marcus, Nov 12 2023

Formula

a(n) = A000010(A104350(n)).

Extensions

a(1) prepended by Michel Marcus, Nov 12 2023

A104356 Smallest m such that A104350(m) has exactly n trailing zeros in decimal representation.

Original entry on oeis.org

1, 5, 10, 15, 20, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Comments

A104355(a(n)) = n and A104355(m) < n for m < a(n).

Formula

a(n) = if n=0 then 1 else (if n<5 then 5*n else 2^n).

A006530 Gpf(n): greatest prime dividing n, for n >= 2; a(1)=1.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, 17, 13, 53, 3, 11, 7, 19, 29, 59, 5, 61, 31, 7, 2, 13, 11, 67, 17, 23, 7, 71, 3, 73, 37, 5, 19, 11, 13, 79, 5, 3, 41, 83, 7, 17, 43
Offset: 1

Views

Author

Keywords

Comments

The initial term a(1)=1 is purely conventional: The unit 1 is not a prime number, although it has been considered so in the past. 1 is the empty product of prime numbers, thus 1 has no largest prime factor. - Daniel Forgues, Jul 05 2011
Greatest noncomposite number dividing n, (cf. A008578). - Omar E. Pol, Aug 31 2013
Conjecture: Let a, b be nonzero integers and f(n) denote the maximum prime factor of a*n + b if a*n + b <> 0 and f(n)=0 if a*n + b=0 for any integer n. Then the set {n, f(n), f(f(n)), ...} is finite of bounded size. - M. Farrokhi D. G., Jan 10 2021

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section IV.1.
  • H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 210.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000040, A020639 (smallest prime divisor), A034684, A028233, A034699, A053585.
Cf. A046670 (partial sums), A104350 (partial products).
See A385503 for "popular" primes.

Programs

  • Magma
    [ #f eq 0 select 1 else f[ #f][1] where f is Factorization(n): n in [1..86] ]; // Klaus Brockhaus, Oct 23 2008
    
  • Maple
    with(numtheory,divisors); A006530 := proc(n) local i,t1,t2,t3,t4,t5; t1 := divisors(n); t2 := convert(t1,list); t3 := sort(t2); t4 := nops(t3); t5 := 1; for i from 1 to t4 do if isprime(t3[t4+1-i]) then return t3[t4+1-i]; fi; od; 1; end;
    # alternative
    A006530 := n->max(1,op(numtheory[factorset](n))); # Peter Luschny, Nov 02 2010
  • Mathematica
    Table[ FactorInteger[n][[ -1, 1]], {n, 100}] (* Ray Chandler, Nov 12 2005 and modified by Robert G. Wilson v, Jul 16 2014 *)
  • PARI
    A006530(n)=if(n>1,vecmax(factor(n)[,1]),1) \\ Edited to cover n=1. - M. F. Hasler, Jul 30 2015
    
  • Python
    from sympy import factorint
    def a(n): return 1 if n == 1 else max(factorint(n))
    print([a(n) for n in range(1, 87)]) # Michael S. Branicky, Aug 08 2022
    
  • SageMath
    def A006530(n): return list(factor(n))[-1][0] if n > 1 else 1
    print([A006530(n) for n in range(1, 87)])  # Peter Luschny, Jan 07 2024
  • Scheme
    ;; The following uses macro definec for the memoization (caching) of the results. A naive implementation of A020639 can be found under that entry. It could be also defined with definec to make it faster on the later calls. See http://oeis.org/wiki/Memoization#Scheme
    (definec (A006530 n) (let ((spf (A020639 n))) (if (= spf n) spf (A006530 (/ n spf)))))
    ;; Antti Karttunen, Mar 12 2017
    

Formula

a(n) = A027748(n, A001221(n)) = A027746(n, A001222(n)); a(n)^A071178(n) = A053585(n). - Reinhard Zumkeller, Aug 27 2011
a(n) = A000040(A061395(n)). - M. F. Hasler, Jan 16 2015
a(n) = n + 1 - Sum_{k=1..n} (floor((k!^n)/n) - floor(((k!^n)-1)/n)). - Anthony Browne, May 11 2016
n/a(n) = A052126(n). - R. J. Mathar, Oct 03 2016
If A020639(n) = n [when n is 1 or a prime] then a(n) = n, otherwise a(n) = a(A032742(n)). - Antti Karttunen, Mar 12 2017
a(n) has average order Pi^2*n/(12 log n) [Brouwer]. See also A046670. - N. J. A. Sloane, Jun 26 2017

Extensions

Edited by M. F. Hasler, Jan 16 2015

A046670 Partial sums of A006530.

Original entry on oeis.org

1, 3, 6, 8, 13, 16, 23, 25, 28, 33, 44, 47, 60, 67, 72, 74, 91, 94, 113, 118, 125, 136, 159, 162, 167, 180, 183, 190, 219, 224, 255, 257, 268, 285, 292, 295, 332, 351, 364, 369, 410, 417, 460, 471, 476, 499, 546, 549, 556, 561, 578, 591, 644, 647, 658, 665, 684
Offset: 1

Views

Author

Keywords

References

  • Handbook of Number Theory, D. S. Mitrinovic et al., Kluwer, Section IV.1.

Crossrefs

Programs

  • Haskell
    a046670 n = a046670_list !! (n-1)
    a046670_list = scanl1 (+) a006530_list -- Reinhard Zumkeller, Jun 15 2013
    
  • Mathematica
    Accumulate[Prepend[Table[FactorInteger[n][[-1,1]],{n,2,100}],1]] (* Harvey P. Dale, Jun 11 2011 *)
  • PARI
    gpf(n)=if(n<4,n,n=factor(n)[,1];n[#n])
    a(n)=sum(k=1,n,gpf(k)) \\ Charles R Greathouse IV, Feb 19 2014

Formula

a(n) = Pi^2/12 * n^2/log n + O(n^2/log^2 n). [See Mitrinovic et al.] - Charles R Greathouse IV, Feb 19 2014

Extensions

More terms from James Sellers

A072486 a(1) = 1, a(n) = a(n-1) times smallest prime factor of n.

Original entry on oeis.org

1, 2, 6, 12, 60, 120, 840, 1680, 5040, 10080, 110880, 221760, 2882880, 5765760, 17297280, 34594560, 588107520, 1176215040, 22348085760, 44696171520, 134088514560, 268177029120, 6168071669760, 12336143339520, 61680716697600
Offset: 1

Views

Author

Amarnath Murthy, Jul 13 2002

Keywords

Comments

a(n) is the product of the smallest divisors > 1 of all the numbers from 2 to n.

Examples

			a(5) = 60. a(6) = 1*2*3*2*5*2 = 120. Also a(6) = a(5) * 2 = 120.
		

Crossrefs

Programs

  • Haskell
    a072486 n = a072486_list !! (n-1)
    a072486_list = scanl1 (*) a020639_list
    -- Reinhard Zumkeller, Apr 10 2014
  • Mathematica
    a = {1}; Do[AppendTo[a, a[[n - 1]] FactorInteger[n][[1, 1]]], {n, 2, 25}]; a (* Michael De Vlieger, Aug 25 2015 *)
    nxt[{n_,a_}]:={n+1,a*FactorInteger[n+1][[1,1]]}; NestList[nxt,{1,1},30][[All,2]] (* Harvey P. Dale, May 03 2018 *)
  • PARI
    al(n)=local(v=vector(n));v[1]=1;for(k=2,n,v[k]=v[k-1]*factor(k)[1,1]);v  \\ Franklin T. Adams-Watters, Jan 13 2012
    
  • PARI
    A072486(n)=prod(k=2,n,factor(k)[1,1])  \\ M. F. Hasler, Jan 13 2012
    

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 25 2003

A330043 Product of largest prime power factors of numbers <= n.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 360, 2520, 20160, 181440, 907200, 9979200, 39916800, 518918400, 3632428800, 18162144000, 290594304000, 4940103168000, 44460928512000, 844757641728000, 4223788208640000, 29566517460480000, 325231692065280000, 7480328917501440000, 59842631340011520000
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2019

Keywords

Comments

Partial products of A034699.

Crossrefs

Programs

  • Mathematica
    a[n_] := Product[Max[#[[1]]^#[[2]] & /@ FactorInteger@k], {k, 1, n}]; Table[a[n], {n, 0, 24}]

Formula

A001221(a(n)) = A000720(n).
Previous Showing 21-27 of 27 results.