cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 61 results. Next

A257672 Numbers of the form floor(r^i) + floor(s^j), where r = (1 + sqrt(5))/2, s = r^2, i >= 0, j >= 0.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 17, 18, 19, 21, 23, 28, 30, 31, 34, 35, 46, 47, 48, 50, 52, 57, 63, 75, 77, 78, 82, 92, 93, 122, 123, 124, 126, 128, 133, 139, 151, 168, 198, 200, 201, 205, 216, 244, 245, 321, 322, 323, 325, 327, 332, 338, 350, 367, 397, 443
Offset: 1

Views

Author

Clark Kimberling, May 03 2015

Keywords

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio; s = r/(r - 1); Take[Union[Flatten[Table[Floor[r^i] + Floor[s^j], {i, 0, 100}, {j, 0, 100}]]], 100]

A309434 a(n) = floor(n*Im(2*e^(i*Pi/5))/(Im(2*e^(i*Pi/5)) - 1)).

Original entry on oeis.org

6, 13, 20, 26, 33, 40, 46, 53, 60, 66, 73, 80, 87, 93, 100, 107, 113, 120, 127, 133, 140, 147, 154, 160, 167, 174, 180, 187, 194, 200, 207, 214, 220, 227, 234, 241, 247, 254, 261, 267, 274, 281, 287, 294, 301, 308, 314, 321, 328, 334, 341
Offset: 1

Views

Author

Karl V. Keller, Jr., Jun 06 2020

Keywords

Comments

This is the Beatty sequence for Im(2*e^(i*Pi/5))/(Im(2*e^(i*Pi/5)) - 1).
This is the complement of A335137.
Im(2*e^(i*Pi/5))/(Im(2*e^(i*Pi/5)) - 1) = (5 + sqrt(5))/2 + sqrt(5 + 2*sqrt(5)) = 6.695717525925148250774877410... = 2 + phi + tan(2*Pi/5) = A296184 + A019970.
For n < 10, a(n) = A109235(n).
Re(2*e^(i*Pi/5))/(Re(2*e^(i*Pi/5)) - 1) = (3 + sqrt(5))/2 = 1 + phi = phi^2 = A104457.
Floor(n*Re(2*e^(i*Pi/5))/(Re(2*e^(i*Pi/5)) - 1)) is A001950 (floor(n*phi^2)).

Examples

			For n = 3, floor(3*6.69571) = 20.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Floor[n * Im[2 * Exp[I * Pi/5]]/(Im[2 * Exp[I * Pi/5]] - 1)]; Array[a, 100] (* Amiram Eldar, Jul 06 2020 *)
  • Python
    from sympy import floor, im, exp, I, pi
    for n in range(1, 101): print(floor(n*im(2*exp(I*pi/5))/(im(2*exp(I*pi/5)) - 1)), end=', ')
    
  • Python
    from sympy import floor, sqrt
    for n in range(1, 101): print(floor(n*((5 + sqrt(5))/2 + sqrt(5 + 2*sqrt(5)))), end=', ')

A337301 Triangle read by rows in which row n lists the closest integers to diagonal lengths of regular n-gon with unit edge length, n >= 4.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 4, 4, 3, 3, 2, 2, 3, 3, 4, 4, 4, 3, 3, 2, 2, 3, 3, 4, 4, 4, 4, 3, 3, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 3, 4, 4, 5, 5, 5, 5, 4, 4, 3, 2, 2, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 2
Offset: 4

Views

Author

Mohammed Yaseen, Aug 22 2020

Keywords

Examples

			Triangle begins:
1;
2, 2;
2, 2, 2;
2, 2, 2, 2;
2, 2, 3, 2, 2;
2, 3, 3, 3, 3, 2;
2, 3, 3, 3, 3, 3, 2;
2, 3, 3, 4, 4, 3, 3, 2;
2, 3, 3, 4, 4, 4, 3, 3, 2;
2, 3, 3, 4, 4, 4, 4, 3, 3, 2;
2, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2;
2, 3, 4, 4, 5, 5, 5, 5, 4, 4, 3, 2;
2, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 2;
...
Row n lists the closest integers to the length of the diagonals drawn from a fixed vertex of a regular n-gon with unit edge length, n >= 4.
The lengths of the diagonals drawn from vertex A of a regular 8-gon ABCDEFGH with unit edge length are:
AC = 1.84775...
AD = 2.41421...
AE = 2.61312...
AF = 2.41421...
AG = 1.84775...
So the row for n=8 is 2, 2, 3, 2, 2.
		

Crossrefs

Cf. A064313.
Decimal expansion of diagonal lengths of regular n-gons with unit edge length:
n=4 A002193.
n=5 A001622.
n=9 A332437.
n=11 A231186.

Programs

  • Mathematica
    T[n_,k_]:=Round[Sin[(k+1)*Pi/n]/Sin[Pi/n]]; Flatten[Table[T[n,k],{n,4,16},{k,1,n-3}]] (* Stefano Spezia, Sep 07 2020 *)

Formula

T(n,k) = round(sin((k+1)*Pi/n)/sin(Pi/n)), n >= 4, 1 <= k <= n-3.

A351354 Numbers k such that the k-th centered 40-gonal numbers (A195317) is a square.

Original entry on oeis.org

1, 3, 7, 45, 117, 799, 2091, 14329, 37513, 257115, 673135, 4613733, 12078909, 82790071, 216747219, 1485607537, 3889371025, 26658145587, 69791931223, 478361013021, 1252365390981, 8583840088783, 22472785106427, 154030760585065, 403257766524697, 2763969850442379
Offset: 1

Views

Author

Lamine Ngom, Feb 08 2022

Keywords

Comments

Corresponding square roots are listed in A351353.
3 and 7 are the unique primes in this sequence, a(2*n+1) and a(2*n) always sharing common factors that are closely linked to Fibonacci (A000045) and Lucas (A000032) numbers (detailed in formula section).
In addition, the ratio a(2*n+1)/a(2*n) converges to 2.618033988 ... = golden ratio squared: A104457.

Examples

			45 is in the sequence because the 45th centered 40-gonal number is 39601, which is a square: 199^2 = A000032(11)^2.
799 is in the sequence because the 799th centered 40-gonal number is 12752041, which is a square: 3571^2 = A000032(17)^2.
		

Crossrefs

Programs

  • Maple
    a[1] := 1: a[2] := 3: a[3] := 7: a[4] := 45: a[5] := 117:
    for n from 6 to 30 do a[n] := a[n - 1] + 18*a[n - 2] - 18*a[n - 3] - a[n - 4] + a[n - 5]: od:
    seq(a[n], n = 1 .. 30);
  • Mathematica
    LinearRecurrence[{1, 18, -18, -1, 1}, {1, 3, 7, 45, 117}, 30] (* Amiram Eldar, Feb 08 2022 *)

Formula

a(n) = A077259(n-1) + 1.
a(1)=1, a(2)=3, a(3)=7, a(4)=45, a(5)=117 and a(n) = a(n-1) + 18*a(n-2) - 18*a(n-3) - a(n-4) + a(n-5).
gcd(a(2*n+1), a(2*n)) = A000045(n)*(A000032(2*n) - 1)/2, if n is odd.
gcd(a(2*n+1), a(2*n)) = A000032(n)*(A000032(2*n) - 1)/2, if n is even.
A195317(a(n)) = A000032(A007310(n))^2 = A351353(n)^2.

A370944 Decimal expansion of ((1+sqrt(5))/2)*sqrt(3) = A001622*A002194.

Original entry on oeis.org

2, 8, 0, 2, 5, 1, 7, 0, 7, 6, 8, 8, 8, 1, 4, 7, 0, 8, 9, 3, 5, 3, 3, 5, 5, 8, 7, 0, 6, 4, 4, 1, 3, 5, 9, 8, 8, 8, 8, 7, 8, 6, 3, 4, 7, 9, 5, 5, 0, 9, 8, 5, 7, 2, 7, 3, 2, 1, 6, 9, 0, 3, 7, 2, 7, 8, 2, 7, 0, 8, 0, 5, 4, 4, 2, 2, 8, 8, 9, 5, 3, 5, 3, 0, 0, 2
Offset: 1

Views

Author

Paolo Xausa, Mar 07 2024

Keywords

Comments

Long space diagonal of a regular dodecahedron with unit edges.

Examples

			2.80251707688814708935335587064413598888786347955...
		

Crossrefs

Cf. A094887 (short diagonal), A104457 (medium diagonal).

Programs

  • Maple
    (sqrt(3) + sqrt(15))/2: evalf(%, 86);  # Peter Luschny, Mar 07 2024
  • Mathematica
    First[RealDigits[GoldenRatio*Sqrt[3], 10, 100]]

Formula

Equals 2*A179296. - Hugo Pfoertner, Mar 07 2024

A131309 Rabbit-like sequence for phi^2.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0
Offset: 0

Views

Author

Gary W. Adamson, Jun 27 2007

Keywords

Comments

The terms given can be computed as the iterates of the morphism 1 -> 110, 0 -> 10, with axiom 1, concatenated. - Joerg Arndt, Mar 01 2022
Ratio of 1's to 0's tends to phi^2, by way of example, in the subset of 8 terms (1, 1, 0, 1, 1, 0, 1, 0), there are five 1's and three 0's.
Subsets have A001906: (1, 3, 8, 21, ...) terms, being partial sums of A027941: (1, 4, 12, 33, ...). After 33 total terms, there are (1 + 3 + 8) zeros and (1 + 2 + 5 + 13) = 21 ones; with the ratio of ones to zeros tending to phi^2 = 2.618...

Examples

			By rows, we get:
  1;
  1, 1, 0;
  1, 1, 0, 1, 1, 0, 1, 0;
  ...
Then append n-th row to the end of (n-1)-th row, forming a continuous string.
		

Crossrefs

Cf. A027941, A001906, A104457 (phi^2).

Formula

Substitution rules T => 2T = t; t => T + t; are derived directly from the matrix generator [2,1; 1,0] (eigenvalue phi^2). Then substitute 1 for T and 0 for t.

A173428 The smallest prime appearing in the truncated version of the decimal expansion of (Golden Ratio)^n shifted iteratively left.

Original entry on oeis.org

1618033, 2618033988749, 42360679, 6854101, 1109, 179, 2903, 469787, 760131556174964248389559523684316960024905121133959373, 1229, 19900502499874064149, 32199689437, 5210019193, 8429
Offset: 1

Views

Author

Michel Lagneau, Feb 18 2010

Keywords

Comments

The n-th power of the golden ratio A001622 is successively shifted left, building floor(A001622^n *10^k) for k = 0, 1, 2, 3,...
As soon as this becomes a prime, we let a(n) be this prime.

Examples

			1618033 is the first prime found in the decimal expansion of Golden Ratio A001622, after 6 shifts to the left.
2618033988749 is the first prime found in the decimal expansion of (Golden Ratio)^2, A104457.
42360679 is the first prime found in the decimal expansion of (Golden Ratio)^3, A098317.
		

Programs

  • Maple
    Digits := 200:for n from 1 to 50 do: n0 := evalf(((sqrt(5)+1)/2)^n): for p from 1 to 100 while (type(trunc(10^p*n0),prime)= false) do:od: n2:= trunc(10^p*n0): print (n2): od:

Extensions

Edited by R. J. Mathar, Feb 24 2010

A281387 Pairs (x, y) of relatively prime positive integers such that (x^2 - 5)/y and (y^2 - 5)/x are both positive integers.

Original entry on oeis.org

4, 11, 11, 29, 29, 76, 76, 199, 199, 521, 521, 1364, 1364, 3571, 3571, 9349, 9349, 24476, 24476, 64079, 64079, 167761, 167761, 439204, 439204, 1149851, 1149851, 3010349, 3010349, 7881196, 7881196, 20633239, 20633239, 54018521, 54018521, 141422324
Offset: 1

Views

Author

Michel Lagneau, Jan 21 2017

Keywords

Comments

For x, y > 2, the solutions start with (4,11) -> (11, 29) -> (29, 76) -> ...
The sequence is infinite (see the proof in the second reference).
Consider the pairs of the form (a(2n-1), a(2n)). Limit_{n->oo} a(2n)/a(2n-1) = phi^2 = 2.618033988749894... (A104457).
Property: a(2n-1)^2 + a(2n)^2 = 3*a(2n-1)*a(2n) + 5.
Apparently a(2*n) = a(2*n+1) = A002878(n) for n >= 1. - Georg Fischer, Dec 05 2022

Crossrefs

Programs

  • Maple
    nn:=10^6:a:=4:
    for b from a+1 to nn do:
    x:=(a^2-5)/b:y:=(b^2-5)/a:
    if x>0 and y>0 and gcd(a,b)=1 and x=floor(x) and y=floor(y)
    then
    printf(`%d, `,a): printf(`%d, `,b):a:=b:
    else fi:
    od:
  • Mathematica
    nn = 10^6; a = 4; Reap[For[b = a+1, b <= nn, b++, x = (a^2-5)/b; y = (b^2-5)/a; If[x>0 && y>0 && GCD[a, b] == 1 && x == Floor[x] && y == Floor[y], Print[a, " ", b]; Sow[a]; Sow[b]; a = b]]][[2, 1]] (* adapted from Maple *)
    (* Second program: *)
    Clear[a]; a[n_] := 2^(-n-2)*((7-3*Sqrt[5])*(1-Sqrt[5])^n-(-Sqrt[5]-1)^(n+1) - (Sqrt[5]-1)^(n+1) + (3*Sqrt[5]+7)*(Sqrt[5]+1)^n); Table[a[n] // Simplify, {n, 1, 36}] (* Jean-François Alcover, Jan 25 2017 *)

Formula

Conjectures from Chai Wah Wu, Jan 28 2024: (Start)
a(n) = 3*a(n-2) - a(n-4) for n > 4.
G.f.: x*(-4*x^3 - x^2 + 11*x + 4)/(x^4 - 3*x^2 + 1). (End)

A341616 Table read by ascending antidiagonals: T(n,j) = Fibonacci(n)*Lucas(n+j), product of the n-th term in the Fibonacci sequence (with F(1)=1 and F(2)=1) and the (n+j)-th term in the Lucas sequence (with L(1)=1 and L(2)=3 and j=0,1,2,...).

Original entry on oeis.org

1, 3, 3, 8, 4, 4, 21, 14, 7, 7, 55, 33, 22, 11, 11, 144, 90, 54, 36, 18, 18, 377, 232, 145, 87, 58, 29, 29, 987, 611, 376, 235, 141, 94, 47, 47, 2584, 1596, 988, 608, 380, 228, 152, 76, 76, 6765, 4182, 2583, 1599, 984, 615, 369, 246, 123, 123
Offset: 1

Views

Author

Jens Rasmussen, Feb 16 2021

Keywords

Comments

j is the offset when combining terms from the two initial sequences.

Examples

			T(4,3) = Fibonacci(4)*Lucas(4+3) = 3*29 = 87.
Square array showing T(n,j) begins:
      j=0 j=1 j=2 j=3 j=4  ..
  n=1   1   3   4   7  11  ..
  n=2   3   4   7  11  18  ..
  n=3   8  14  22  36  58  ..
  n=4  21  33  54  87 141  ..
  ...  ..  ..  ..  ..  ..  ..
		

Crossrefs

For j=0 the resulting sequence is used as input in A341414.

Programs

  • PARI
    T(n,j) = fibonacci(2*n+j) - (-1)^n*fibonacci(j);
    matrix(7,7,n,k, T(n,k-1)) \\ Michel Marcus, Mar 02 2021

Formula

For phi=(1+sqrt(5))/2 and tau=(1-sqrt(5))/2:
T(n,j) = Fibonacci(n)*Lucas(n+j).
T(n,j) = (phi^n - tau^n)*(phi^(n+j) + tau^(n+j))/sqrt(5).
T(n,j) = Fibonacci(2n+j) - (-1)^n*Fibonacci(j).
Lim_{n, j -> oo} T(n+1,j)/T(n,j) = phi^2 (A104457).
Lim_{n, j -> oo} T(n,j+1)/T(n,j) = phi (A001622).

A359727 Beattific 'primes': numbers n > 1 not equal to floor(k*m*phi) or floor(k*m*phi^2) for any smaller element k in this sequence and any positive integer m.

Original entry on oeis.org

2, 4, 7, 8, 13, 14, 17, 23, 24, 28, 30, 39, 40, 43, 46, 49, 50, 53, 59, 65, 66, 70, 72, 75, 76, 81, 86, 88, 92, 96, 98, 107, 108, 114, 117, 118, 123, 127, 134, 140, 143, 144, 149, 150, 153, 156, 159, 160, 163, 166, 175, 176, 179, 182, 185, 191, 195
Offset: 1

Views

Author

James Propp, Jan 11 2023

Keywords

Comments

Given r = (1+sqrt(5))/2 and s = r^2, we sieve the set {2,3,4,...}, where each time we discover a new "prime" p, we sieve out the numbers floor(p*r), floor(2p*r), floor(3p*r), ... and floor(p*s), floor(2p*s), floor(3p*s), ... It appears that significantly more than half the terms are even.

Examples

			The Beattific prime 2 causes us to sieve out 3, 6, 9, ... and 5, 10, ...; then the next Beattific prime, 4, doesn't cause us to throw out anything new; then the next Beattific prime is 7.
		

Crossrefs

Programs

  • Mathematica
    bp[limit_] := (*Find all the Beattific primes up to limit*)
      Module[{r = (1 + Sqrt[5])/2, sieve = ConstantArray[1, limit]},
       Do[If[sieve[[n]] == 1,
         sieve[[Table[Floor[k n r], {k, (limit + 1)/(n r)}]]] = 0;
         sieve[[Table[Floor[k n r r], {k, (limit + 1)/(n r r)}]]] = 0],
        {n, 2, limit}];
       Rest@Flatten@Position[sieve, 1]];
  • PARI
    h(n)=(n+sqrtint(5*n^2))\2
    list(lim)=my(v=vectorsmall(lim\=1,i,1),u=List()); for(n=2,#v, if(v[n]==0, next); listput(u,n); forstep(k=n,h(lim+1)-lim-1,n, v[h(k)]=0); forstep(k=n,2*lim+1-h(lim+1),n, v[h(k)+k]=0)); Vec(u) \\ Charles R Greathouse IV, Jan 25 2023
Previous Showing 51-60 of 61 results. Next