A257672
Numbers of the form floor(r^i) + floor(s^j), where r = (1 + sqrt(5))/2, s = r^2, i >= 0, j >= 0.
Original entry on oeis.org
2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 17, 18, 19, 21, 23, 28, 30, 31, 34, 35, 46, 47, 48, 50, 52, 57, 63, 75, 77, 78, 82, 92, 93, 122, 123, 124, 126, 128, 133, 139, 151, 168, 198, 200, 201, 205, 216, 244, 245, 321, 322, 323, 325, 327, 332, 338, 350, 367, 397, 443
Offset: 1
-
r = GoldenRatio; s = r/(r - 1); Take[Union[Flatten[Table[Floor[r^i] + Floor[s^j], {i, 0, 100}, {j, 0, 100}]]], 100]
A309434
a(n) = floor(n*Im(2*e^(i*Pi/5))/(Im(2*e^(i*Pi/5)) - 1)).
Original entry on oeis.org
6, 13, 20, 26, 33, 40, 46, 53, 60, 66, 73, 80, 87, 93, 100, 107, 113, 120, 127, 133, 140, 147, 154, 160, 167, 174, 180, 187, 194, 200, 207, 214, 220, 227, 234, 241, 247, 254, 261, 267, 274, 281, 287, 294, 301, 308, 314, 321, 328, 334, 341
Offset: 1
For n = 3, floor(3*6.69571) = 20.
-
a[n_] := Floor[n * Im[2 * Exp[I * Pi/5]]/(Im[2 * Exp[I * Pi/5]] - 1)]; Array[a, 100] (* Amiram Eldar, Jul 06 2020 *)
-
from sympy import floor, im, exp, I, pi
for n in range(1, 101): print(floor(n*im(2*exp(I*pi/5))/(im(2*exp(I*pi/5)) - 1)), end=', ')
-
from sympy import floor, sqrt
for n in range(1, 101): print(floor(n*((5 + sqrt(5))/2 + sqrt(5 + 2*sqrt(5)))), end=', ')
A337301
Triangle read by rows in which row n lists the closest integers to diagonal lengths of regular n-gon with unit edge length, n >= 4.
Original entry on oeis.org
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 4, 4, 3, 3, 2, 2, 3, 3, 4, 4, 4, 3, 3, 2, 2, 3, 3, 4, 4, 4, 4, 3, 3, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 3, 4, 4, 5, 5, 5, 5, 4, 4, 3, 2, 2, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 2
Offset: 4
Triangle begins:
1;
2, 2;
2, 2, 2;
2, 2, 2, 2;
2, 2, 3, 2, 2;
2, 3, 3, 3, 3, 2;
2, 3, 3, 3, 3, 3, 2;
2, 3, 3, 4, 4, 3, 3, 2;
2, 3, 3, 4, 4, 4, 3, 3, 2;
2, 3, 3, 4, 4, 4, 4, 3, 3, 2;
2, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2;
2, 3, 4, 4, 5, 5, 5, 5, 4, 4, 3, 2;
2, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 2;
...
Row n lists the closest integers to the length of the diagonals drawn from a fixed vertex of a regular n-gon with unit edge length, n >= 4.
The lengths of the diagonals drawn from vertex A of a regular 8-gon ABCDEFGH with unit edge length are:
AC = 1.84775...
AD = 2.41421...
AE = 2.61312...
AF = 2.41421...
AG = 1.84775...
So the row for n=8 is 2, 2, 3, 2, 2.
Decimal expansion of diagonal lengths of regular n-gons with unit edge length:
-
T[n_,k_]:=Round[Sin[(k+1)*Pi/n]/Sin[Pi/n]]; Flatten[Table[T[n,k],{n,4,16},{k,1,n-3}]] (* Stefano Spezia, Sep 07 2020 *)
A351354
Numbers k such that the k-th centered 40-gonal numbers (A195317) is a square.
Original entry on oeis.org
1, 3, 7, 45, 117, 799, 2091, 14329, 37513, 257115, 673135, 4613733, 12078909, 82790071, 216747219, 1485607537, 3889371025, 26658145587, 69791931223, 478361013021, 1252365390981, 8583840088783, 22472785106427, 154030760585065, 403257766524697, 2763969850442379
Offset: 1
45 is in the sequence because the 45th centered 40-gonal number is 39601, which is a square: 199^2 = A000032(11)^2.
799 is in the sequence because the 799th centered 40-gonal number is 12752041, which is a square: 3571^2 = A000032(17)^2.
-
a[1] := 1: a[2] := 3: a[3] := 7: a[4] := 45: a[5] := 117:
for n from 6 to 30 do a[n] := a[n - 1] + 18*a[n - 2] - 18*a[n - 3] - a[n - 4] + a[n - 5]: od:
seq(a[n], n = 1 .. 30);
-
LinearRecurrence[{1, 18, -18, -1, 1}, {1, 3, 7, 45, 117}, 30] (* Amiram Eldar, Feb 08 2022 *)
A370944
Decimal expansion of ((1+sqrt(5))/2)*sqrt(3) = A001622*A002194.
Original entry on oeis.org
2, 8, 0, 2, 5, 1, 7, 0, 7, 6, 8, 8, 8, 1, 4, 7, 0, 8, 9, 3, 5, 3, 3, 5, 5, 8, 7, 0, 6, 4, 4, 1, 3, 5, 9, 8, 8, 8, 8, 7, 8, 6, 3, 4, 7, 9, 5, 5, 0, 9, 8, 5, 7, 2, 7, 3, 2, 1, 6, 9, 0, 3, 7, 2, 7, 8, 2, 7, 0, 8, 0, 5, 4, 4, 2, 2, 8, 8, 9, 5, 3, 5, 3, 0, 0, 2
Offset: 1
2.80251707688814708935335587064413598888786347955...
-
(sqrt(3) + sqrt(15))/2: evalf(%, 86); # Peter Luschny, Mar 07 2024
-
First[RealDigits[GoldenRatio*Sqrt[3], 10, 100]]
A131309
Rabbit-like sequence for phi^2.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0
Offset: 0
By rows, we get:
1;
1, 1, 0;
1, 1, 0, 1, 1, 0, 1, 0;
...
Then append n-th row to the end of (n-1)-th row, forming a continuous string.
A173428
The smallest prime appearing in the truncated version of the decimal expansion of (Golden Ratio)^n shifted iteratively left.
Original entry on oeis.org
1618033, 2618033988749, 42360679, 6854101, 1109, 179, 2903, 469787, 760131556174964248389559523684316960024905121133959373, 1229, 19900502499874064149, 32199689437, 5210019193, 8429
Offset: 1
1618033 is the first prime found in the decimal expansion of Golden Ratio A001622, after 6 shifts to the left.
2618033988749 is the first prime found in the decimal expansion of (Golden Ratio)^2, A104457.
42360679 is the first prime found in the decimal expansion of (Golden Ratio)^3, A098317.
- Eric Weisstein's World of Mathematics, Phi-Prime
A281387
Pairs (x, y) of relatively prime positive integers such that (x^2 - 5)/y and (y^2 - 5)/x are both positive integers.
Original entry on oeis.org
4, 11, 11, 29, 29, 76, 76, 199, 199, 521, 521, 1364, 1364, 3571, 3571, 9349, 9349, 24476, 24476, 64079, 64079, 167761, 167761, 439204, 439204, 1149851, 1149851, 3010349, 3010349, 7881196, 7881196, 20633239, 20633239, 54018521, 54018521, 141422324
Offset: 1
-
nn:=10^6:a:=4:
for b from a+1 to nn do:
x:=(a^2-5)/b:y:=(b^2-5)/a:
if x>0 and y>0 and gcd(a,b)=1 and x=floor(x) and y=floor(y)
then
printf(`%d, `,a): printf(`%d, `,b):a:=b:
else fi:
od:
-
nn = 10^6; a = 4; Reap[For[b = a+1, b <= nn, b++, x = (a^2-5)/b; y = (b^2-5)/a; If[x>0 && y>0 && GCD[a, b] == 1 && x == Floor[x] && y == Floor[y], Print[a, " ", b]; Sow[a]; Sow[b]; a = b]]][[2, 1]] (* adapted from Maple *)
(* Second program: *)
Clear[a]; a[n_] := 2^(-n-2)*((7-3*Sqrt[5])*(1-Sqrt[5])^n-(-Sqrt[5]-1)^(n+1) - (Sqrt[5]-1)^(n+1) + (3*Sqrt[5]+7)*(Sqrt[5]+1)^n); Table[a[n] // Simplify, {n, 1, 36}] (* Jean-François Alcover, Jan 25 2017 *)
A341616
Table read by ascending antidiagonals: T(n,j) = Fibonacci(n)*Lucas(n+j), product of the n-th term in the Fibonacci sequence (with F(1)=1 and F(2)=1) and the (n+j)-th term in the Lucas sequence (with L(1)=1 and L(2)=3 and j=0,1,2,...).
Original entry on oeis.org
1, 3, 3, 8, 4, 4, 21, 14, 7, 7, 55, 33, 22, 11, 11, 144, 90, 54, 36, 18, 18, 377, 232, 145, 87, 58, 29, 29, 987, 611, 376, 235, 141, 94, 47, 47, 2584, 1596, 988, 608, 380, 228, 152, 76, 76, 6765, 4182, 2583, 1599, 984, 615, 369, 246, 123, 123
Offset: 1
T(4,3) = Fibonacci(4)*Lucas(4+3) = 3*29 = 87.
Square array showing T(n,j) begins:
j=0 j=1 j=2 j=3 j=4 ..
n=1 1 3 4 7 11 ..
n=2 3 4 7 11 18 ..
n=3 8 14 22 36 58 ..
n=4 21 33 54 87 141 ..
... .. .. .. .. .. ..
For j=0 the resulting sequence is used as input in
A341414.
-
T(n,j) = fibonacci(2*n+j) - (-1)^n*fibonacci(j);
matrix(7,7,n,k, T(n,k-1)) \\ Michel Marcus, Mar 02 2021
A359727
Beattific 'primes': numbers n > 1 not equal to floor(k*m*phi) or floor(k*m*phi^2) for any smaller element k in this sequence and any positive integer m.
Original entry on oeis.org
2, 4, 7, 8, 13, 14, 17, 23, 24, 28, 30, 39, 40, 43, 46, 49, 50, 53, 59, 65, 66, 70, 72, 75, 76, 81, 86, 88, 92, 96, 98, 107, 108, 114, 117, 118, 123, 127, 134, 140, 143, 144, 149, 150, 153, 156, 159, 160, 163, 166, 175, 176, 179, 182, 185, 191, 195
Offset: 1
The Beattific prime 2 causes us to sieve out 3, 6, 9, ... and 5, 10, ...; then the next Beattific prime, 4, doesn't cause us to throw out anything new; then the next Beattific prime is 7.
-
bp[limit_] := (*Find all the Beattific primes up to limit*)
Module[{r = (1 + Sqrt[5])/2, sieve = ConstantArray[1, limit]},
Do[If[sieve[[n]] == 1,
sieve[[Table[Floor[k n r], {k, (limit + 1)/(n r)}]]] = 0;
sieve[[Table[Floor[k n r r], {k, (limit + 1)/(n r r)}]]] = 0],
{n, 2, limit}];
Rest@Flatten@Position[sieve, 1]];
-
h(n)=(n+sqrtint(5*n^2))\2
list(lim)=my(v=vectorsmall(lim\=1,i,1),u=List()); for(n=2,#v, if(v[n]==0, next); listput(u,n); forstep(k=n,h(lim+1)-lim-1,n, v[h(k)]=0); forstep(k=n,2*lim+1-h(lim+1),n, v[h(k)+k]=0)); Vec(u) \\ Charles R Greathouse IV, Jan 25 2023
Comments