cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 65 results. Next

A329766 Number of compositions of n whose run-lengths cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 1, 3, 6, 13, 21, 48, 89, 180, 355, 707, 1382, 2758, 5448, 10786, 21391, 42476, 84291, 167516, 333036, 662153, 1317687, 2622706, 5221951, 10400350, 20720877, 41288823, 82294979, 164052035, 327088649, 652238016, 1300788712, 2594486045, 5175378128, 10324522020
Offset: 0

Views

Author

Gus Wiseman, Nov 20 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers with sum n.

Examples

			The a(0) = 1 through a(5) = 13 compositions:
  ()  (1)  (2)  (3)    (4)      (5)
                (1,2)  (1,3)    (1,4)
                (2,1)  (3,1)    (2,3)
                       (1,1,2)  (3,2)
                       (1,2,1)  (4,1)
                       (2,1,1)  (1,1,3)
                                (1,2,2)
                                (1,3,1)
                                (2,1,2)
                                (2,2,1)
                                (3,1,1)
                                (1,1,2,1)
                                (1,2,1,1)
		

Crossrefs

Looking at multiplicities instead of run-lengths gives A329741.
The complete case is A329749.
Complete compositions are A107429.

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],normQ[Length/@Split[#]]&]],{n,0,10}]

Extensions

a(21)-a(26) from Giovanni Resta, Nov 22 2019
a(27)-a(35) from Alois P. Heinz, Jul 06 2020

A332577 Number of integer partitions of n covering an initial interval of positive integers with unimodal run-lengths.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 14, 16, 19, 23, 25, 30, 36, 40, 45, 54, 59, 68, 79, 86, 96, 112, 121, 135, 155, 168, 188, 214, 230, 253, 284, 308, 337, 380, 407, 445, 497, 533, 580, 645, 689, 748, 828, 885, 956, 1053, 1124, 1212, 1330, 1415, 1519, 1665, 1771
Offset: 0

Views

Author

Gus Wiseman, Feb 24 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(1) = 1 through a(9) = 8 partitions:
  1  11  21   211   221    321     2221     3221      3321
         111  1111  2111   2211    3211     22211     22221
                    11111  21111   22111    32111     32211
                           111111  211111   221111    222111
                                   1111111  2111111   321111
                                            11111111  2211111
                                                      21111111
                                                      111111111
		

Crossrefs

Not requiring unimodality gives A000009.
A version for compositions is A227038.
Not requiring the partition to cover an initial interval gives A332280.
The complement is counted by A332579.
Unimodal compositions are A001523.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&unimodQ[Length/@Split[#]]&]],{n,0,30}]

A332670 Triangle read by rows where T(n,k) is the number of length-k compositions of n whose negation is unimodal.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 4, 5, 2, 1, 0, 1, 5, 7, 5, 2, 1, 0, 1, 6, 11, 10, 5, 2, 1, 0, 1, 7, 15, 16, 10, 5, 2, 1, 0, 1, 8, 20, 24, 20, 10, 5, 2, 1, 0, 1, 9, 25, 36, 31, 20, 10, 5, 2, 1, 0, 1, 10, 32, 50, 50, 36, 20, 10, 5, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  2  1
  0  1  3  2  1
  0  1  4  5  2  1
  0  1  5  7  5  2  1
  0  1  6 11 10  5  2  1
  0  1  7 15 16 10  5  2  1
  0  1  8 20 24 20 10  5  2  1
  0  1  9 25 36 31 20 10  5  2  1
  0  1 10 32 50 50 36 20 10  5  2  1
  0  1 11 38 67 73 59 36 20 10  5  2  1
Column n = 7 counts the following compositions:
  (7)  (16)  (115)  (1114)  (11113)  (111112)  (1111111)
       (25)  (124)  (1123)  (11122)  (211111)
       (34)  (133)  (1222)  (21112)
       (43)  (214)  (2113)  (22111)
       (52)  (223)  (2122)  (31111)
       (61)  (313)  (2212)
             (322)  (2221)
             (331)  (3112)
             (412)  (3211)
             (421)  (4111)
             (511)
		

Crossrefs

The case of partitions is A072233.
Dominated by A072704 (the non-negated version).
The strict case is A072705.
The case of constant compositions is A113704.
Row sums are A332578.
Unimodal compositions are A001523.
Unimodal normal sequences appear to be A007052.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers whose negated unsorted prime signature is not unimodal are A332282.
Partitions whose negated run-lengths are unimodal are A332638.
Compositions whose negation is not unimodal are A332669.
Partitions whose negated 0-appended first differences are unimodal: A332728.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],unimodQ[-#]&]],{n,0,10},{k,0,n}]
  • PARI
    T(n)={[Vecrev(p) | p<-Vec(1 + sum(j=1, n, y*x^j/((1-y*x^j) * prod(k=j+1, n-j, 1 - y*x^k + O(x*x^(n-j)))^2)))]}
    { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 11 2024

Formula

G.f.: A(x,y) = 1 + Sum_{j>0} y*x^j/((1 - y*x^j)*Product_{k>j} (1 - y*x^k)^2). - Andrew Howroyd, Jan 11 2024

A332340 Number of widely alternately co-strongly normal compositions of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 4, 9, 11, 13, 23, 53, 78, 120, 207, 357, 707, 1183, 2030, 3558, 6229, 10868
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2020

Keywords

Comments

An integer partition is widely alternately co-strongly normal if either it is constant 1's (wide) or it covers an initial interval of positive integers (normal) with weakly increasing run-length (co-strong) which, if reversed, are themselves a widely alternately co-strongly normal partition.

Examples

			The a(1) = 1 through a(8) = 13 compositions:
  (1)  (11)  (12)   (121)   (122)    (123)     (1213)     (1232)
             (21)   (211)   (212)    (132)     (1231)     (1322)
             (111)  (1111)  (1211)   (213)     (1312)     (2123)
                            (11111)  (231)     (1321)     (2132)
                                     (312)     (2122)     (2312)
                                     (321)     (2131)     (2321)
                                     (1212)    (2311)     (3122)
                                     (2121)    (3121)     (3212)
                                     (111111)  (3211)     (12131)
                                               (12121)    (13121)
                                               (1111111)  (21212)
                                                          (122111)
                                                          (11111111)
For example, starting with the composition y = (122111) and repeatedly taking run-lengths and reversing gives (122111) -> (321) -> (111). All of these are normal with weakly increasing run-lengths and the last is all 1's, so y is counted under a(8).
		

Crossrefs

Normal compositions are A107429.
Compositions with normal run-lengths are A329766.
The Heinz numbers of the case of partitions are A332290.
The case of partitions is A332289.
The total (instead of alternating) version is A332337.
Not requiring normality gives A332338.
The strong version is this same sequence.
The narrow version is a(n) + 1 for n > 1.

Programs

  • Mathematica
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Reverse[Length/@Split[ptn]]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],totnQ]],{n,0,10}]

A332579 Number of integer partitions of n covering an initial interval of positive integers with non-unimodal run-lengths.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 4, 7, 8, 10, 14, 19, 22, 30, 36, 43, 56, 69, 80, 101, 121, 141, 172, 202, 234, 282, 332, 384, 452, 527, 602, 706, 815, 929, 1077, 1236, 1403, 1615, 1842, 2082, 2379, 2702, 3044, 3458, 3908, 4388, 4963, 5589, 6252
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
Also the number of strict integer partitions of n whose negated first differences (assuming the last part is zero) are not unimodal.

Examples

			The a(10) = 1 through a(16) = 7 partitions:
  33211  332111  3321111  333211    433211     443211      443221
                          33211111  3332111    4332111     3333211
                                    332111111  33321111    4432111
                                               3321111111  33322111
                                                           43321111
                                                           333211111
                                                           33211111111
		

Crossrefs

The complement is counted by A332577.
Not requiring the partition to cover an initial interval gives A332281.
The opposite version is A332286.
A version for compositions is A332743.
Partitions covering an initial interval of positive integers are A000009.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers whose prime signature is not unimodal are A332282.
Partitions whose 0-appended first differences are unimodal are A332283.
Compositions whose negated run-lengths are not unimodal are A332727.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&!unimodQ[Length/@Split[#]]&]],{n,0,30}]

A329740 Number of compositions of n whose multiplicities are distinct and cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 1, 1, 4, 7, 4, 10, 10, 10, 73, 196, 133, 379, 319, 379, 502, 805, 562, 1108, 13648, 51448, 51691, 115174, 140011, 178597, 203617, 329737, 292300, 456703, 456160, 608386, 633466, 898186, 823009, 39014392, 190352269, 266293795, 493345615, 834326995, 947714938
Offset: 0

Views

Author

Gus Wiseman, Nov 21 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers with sum n.

Examples

			The a(1) = 1 through a(9) = 10 compositions:
  (1)  (2)  (3)  (4)      (5)      (6)      (7)      (8)      (9)
                 (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)  (1,1,6)  (1,1,7)
                 (1,2,1)  (1,2,2)  (1,4,1)  (1,3,3)  (1,6,1)  (1,4,4)
                 (2,1,1)  (1,3,1)  (4,1,1)  (1,5,1)  (2,2,4)  (1,7,1)
                          (2,1,2)           (2,2,3)  (2,3,3)  (2,2,5)
                          (2,2,1)           (2,3,2)  (2,4,2)  (2,5,2)
                          (3,1,1)           (3,1,3)  (3,2,3)  (4,1,4)
                                            (3,2,2)  (3,3,2)  (4,4,1)
                                            (3,3,1)  (4,2,2)  (5,2,2)
                                            (5,1,1)  (6,1,1)  (7,1,1)
		

Crossrefs

The version allowing repeated multiplicities is A329741.
Complete compositions are A107429.
Compositions whose multiplicities are distinct are A242882.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Range[Length[Union[#]]]==Sort[Length/@Split[Sort[#]]]&]],{n,0,10}]

Extensions

a(21)-a(40) from Alois P. Heinz, Nov 21 2019

A332337 Number of widely totally strongly normal compositions of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 9, 9, 12, 23, 54, 77, 116, 205, 352, 697, 1174, 2013, 3538, 6209, 10830
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2020

Keywords

Comments

A sequence is widely totally strongly normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has weakly decreasing run-lengths (strong) that are themselves a widely totally strongly normal sequence.

Examples

			The a(1) = 1 through a(8) = 12 compositions:
  (1)  (11)  (12)   (112)   (212)    (123)     (1213)     (1232)
             (21)   (121)   (221)    (132)     (1231)     (2123)
             (111)  (1111)  (11111)  (213)     (1312)     (2132)
                                     (231)     (1321)     (2312)
                                     (312)     (2131)     (2321)
                                     (321)     (3121)     (3212)
                                     (1212)    (11221)    (12131)
                                     (2121)    (12121)    (13121)
                                     (111111)  (1111111)  (21212)
                                                          (22112)
                                                          (111221)
                                                          (11111111)
For example, starting with (22112) and repeated taking run-lengths gives (22112) -> (221) -> (21) -> (11). These are all normal with weakly decreasing run-lengths, and the last is all 1's, so (22112) is counted under a(8).
		

Crossrefs

Normal compositions are A107429.
The case of partitions is A332278.
The non-strong version is A332279.
Heinz numbers in the case of partitions are A332291.
The narrow version is A332336.
The alternating version is A332340.
The co-strong version is this same sequence.

Programs

  • Mathematica
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Length/@Split[ptn]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],totnQ]],{n,0,10}]

Formula

For n > 1, a(n) = A332336(n) - 1.

A332289 Number of widely alternately co-strongly normal integer partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Feb 13 2020

Keywords

Comments

An integer partition is widely alternately co-strongly normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has weakly increasing run-lengths (co-strong) which, if reversed, are themselves a widely alternately co-strongly normal partition.

Examples

			The a(1) = 1, a(3) = 2, and a(10) = 3 partitions:
  (1)  (21)   (4321)
       (111)  (322111)
              (1111111111)
For example, starting with y = (4,3,2,2,1,1,1) and repeatedly taking run-lengths and reversing gives y -> (3,2,1,1) -> (2,1,1) -> (2,1) -> (1,1). These are all normal, have weakly increasing run-lengths, and the last is all 1's, so y is counted a(14).
		

Crossrefs

Normal partitions are A000009.
Dominated by A317245.
The non-co-strong version is A332277.
The total (instead of alternate) version is A332278.
The Heinz numbers of these partitions are A332290.
The strong version is A332292.
The case of reversed partitions is (also) A332292.
The generalization to compositions is A332340.

Programs

  • Mathematica
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Reverse[Length/@Split[ptn]]]]];
    Table[Length[Select[IntegerPartitions[n],totnQ]],{n,0,30}]

A332743 Number of non-unimodal compositions of n covering an initial interval of positive integers.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 5, 14, 35, 83, 193, 417, 890, 1847, 3809, 7805, 15833, 32028, 64513, 129671, 260155, 521775, 1044982, 2092692, 4188168, 8381434, 16767650, 33544423, 67098683, 134213022, 268443023, 536912014, 1073846768, 2147720476, 4295440133, 8590833907
Offset: 0

Views

Author

Gus Wiseman, Mar 02 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(5) = 1 through a(7) = 14 compositions:
  (212)  (213)   (1213)
         (312)   (1312)
         (1212)  (2113)
         (2112)  (2122)
         (2121)  (2131)
                 (2212)
                 (3112)
                 (3121)
                 (11212)
                 (12112)
                 (12121)
                 (21112)
                 (21121)
                 (21211)
		

Crossrefs

Not requiring non-unimodality gives A107429.
Not requiring the covering condition gives A115981.
The complement is counted by A227038.
A version for partitions is A332579, with complement A332577.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal normal sequences are A328509.
Numbers whose unsorted prime signature is not unimodal are A332282.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],normQ[#]&&!unimodQ[#]&]],{n,0,10}]

Formula

For n > 0, a(n) = A107429(n) - A227038(n).

A332278 Number of widely totally co-strongly normal integer partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 0

Views

Author

Gus Wiseman, Mar 05 2020

Keywords

Comments

A sequence of integers is widely totally co-strongly normal if either it is constant 1's (wide) or it covers an initial interval of positive integers (normal) with weakly increasing run-lengths (co-strong) which are themselves a widely totally co-strongly normal sequence.
Is this sequence bounded?

Examples

			The a(1) = 1 through a(20) = 2 partitions:
   1: (1)
   2: (11)
   3: (21),(111)
   4: (211),(1111)
   5: (11111)
   6: (321),(111111)
   7: (1111111)
   8: (11111111)
   9: (32211),(111111111)
  10: (4321),(322111),(1111111111)
  11: (11111111111)
  12: (111111111111)
  13: (1111111111111)
  14: (11111111111111)
  15: (54321),(111111111111111)
  16: (1111111111111111)
  17: (11111111111111111)
  18: (111111111111111111)
  19: (1111111111111111111)
  20: (4332221111),(11111111111111111111)
		

Crossrefs

Not requiring co-strength gives A332277.
The strong version is A332297(n) - 1 for n > 1.
The narrow version is a(n) - 1 for n > 1.
The alternating version is A332289.
The Heinz numbers of these partitions are A332293.
The case of compositions is A332337.

Programs

  • Mathematica
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Length/@Split[ptn]]]];
    Table[Length[Select[IntegerPartitions[n],totnQ]],{n,0,30}]

Extensions

a(71)-a(78) from Jinyuan Wang, Jun 26 2020
Previous Showing 11-20 of 65 results. Next