cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A218540 Reduced third-order Patalan numbers.

Original entry on oeis.org

1, 1, 1, 5, 10, 66, 154, 1122, 2805, 21505, 55913, 442221, 1179256, 9524760, 25852920, 211993944, 582983346, 4835332458, 13431479050, 112400272050, 314720761740, 2652646420380, 7475639911980, 63380425340700, 179577871798650, 1530003467724498
Offset: 0

Views

Author

R. J. Mathar, Nov 01 2012

Keywords

Comments

Obtained by removing powers of 3 in a systematic manner from the Patalan numbers A025748.

Crossrefs

Programs

  • Maple
    A218540 := proc(n)
        option remember;
        if n <=2 then
            1;
        elif n = 3 then
            5 ;
        else
            (n-1)*(n-2)*(n+4)*procname(n-1)-3*(3*n-4)*(3*n-7)*(n+2)*procname(n-2)-3*(3*n-10)*(n+4)*(3*n-7)*procname(n-3) ;
            -%/n/(n+2)/(n-1) ;
        end if;
    end proc:
  • Mathematica
    a[n_] := 3^(2*n-2-Floor[n/2]) * Pochhammer[2/3, n-1]/n!; a[0] = 1; Array[a, 26, 0] (* Amiram Eldar, Aug 20 2025 *)

Formula

a(n) = A025748(n)/A108411(n).
D-finite with recurrence n*(n+2)*(n-1)*a(n) + (n-1)*(n-2)*(n+4)*a(n-1) - 3*(3*n-4)*(3*n-7)*(n+2)*a(n-2) - 3*(3*n-10)*(n+4)*(3*n-7)*a(n-3) = 0, n >= 4.
a(n) ~ 3^(2*n-2-floor(n/2)) / (Gamma(2/3) * n^(4/3)). - Amiram Eldar, Aug 20 2025

A242763 a(n) = 1 for n <= 7; a(n) = a(n-5) + a(n-7) for n>7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 8, 9, 9, 12, 12, 15, 16, 17, 21, 21, 27, 28, 32, 37, 38, 48, 49, 59, 65, 70, 85, 87, 107, 114, 129, 150, 157, 192, 201, 236, 264, 286, 342, 358, 428, 465, 522, 606, 644, 770, 823, 950, 1071, 1166, 1376
Offset: 1

Views

Author

Keywords

Comments

Generalized Fibonacci growth sequence using i = 2 as maturity period, j = 5 as conception period, and k = 2 as growth factor.
Maturity period is the number of periods that a Fibonacci tree node needs for being able to start developing branches. Conception period is the number of periods in a Fibonacci tree node needed to develop new branches since its maturity. Growth factor is the number of additional branches developed by a Fibonacci tree node, plus 1, and equals the base of the exponential series related to the given tree if maturity factor would be zero. Standard Fibonacci would use 1 as maturity period, 1 as conception period, and 2 as growth factor as the series becomes equal to 2^n with a maturity period of 0. Related to Lucas sequences.

Examples

			For n = 13 the a(13) = a(8) + a(6) = 2 + 1 = 3.
		

Crossrefs

Cf. A000079 (i = 0, j = 1, k = 2), A000244 (i = 0, j = 1, k = 3), A000302 (i = 0, j = 1, k = 4), A000351 (i = 0, j = 1, k = 5), A000400 (i = 0, j = 1, k = 6), A000420 (i = 0, j = 1, k = 7), A001018 (i = 0, j = 1, k = 8), A001019 (i = 0, j = 1, k = 9), A011557 (i = 0, j = 1, k = 10), A001020 (i = 0, j = 1, k = 11), A001021 (i = 0, j = 1, k = 12), A016116 (i = 0, j = 2, k = 2), A108411 (i = 0, j = 2, k = 3), A213173 (i = 0, j = 2, k = 4), A074872 (i = 0, j = 2, k = 5), A173862 (i = 0, j = 3, k = 2), A127975 (i = 0, j = 3, k = 3), A200675 (i = 0, j = 4, k = 2), A111575 (i = 0, j = 4, k = 3), A000045 (i = 1, j = 1, k = 2), A001045 (i = 1, j = 1, k = 3), A006130 (i = 1, j = 1, k = 4), A006131 (i = 1, j = 1, k = 5), A015440 (i = 1, j = 1, k = 6), A015441 (i = 1, j = 1, k = 7), A015442 (i = 1, j = 1, k = 8), A015443 (i = 1, j = 1, k = 9), A015445 (i = 1, j = 1, k = 10), A015446 (i = 1, j = 1, k = 11), A015447 (i = 1, j = 1, k = 12), A000931 (i = 1, j = 2, k = 2), A159284 (i = 1, j = 2, k = 3), A238389 (i = 1, j = 2, k = 4), A097041 (i = 1, j = 2, k = 10), A079398 (i = 1, j = 3, k = 2), A103372 (i = 1, j = 4, k = 2), A103373 (i = 1, j = 5, k = 2), A103374 (i = 1, j = 6, k = 2), A000930 (i = 2, j = 1, k = 2), A077949 (i = 2, j = 1, k = 3), A084386 (i = 2, j = 1, k = 4), A089977 (i = 2, j = 1, k = 5), A178205 (i = 2, j = 1, k = 11), A103609 (i = 2, j = 2, k = 2), A077953 (i = 2, j = 2, k = 3), A226503 (i = 2, j = 3, k = 2), A122521 (i = 2, j = 6, k = 2), A003269 (i = 3, j = 1, k = 2), A052942 (i = 3, j = 1, k = 3), A005686 (i = 3, j = 2, k = 2), A237714 (i = 3, j = 2, k = 3), A238391 (i = 3, j = 2, k = 4), A247049 (i = 3, j = 3, k = 2), A077886 (i = 3, j = 3, k = 3), A003520 (i = 4, j = 1, k = 2), A108104 (i = 4, j = 2, k = 2), A005708 (i = 5, j = 1, k = 2), A237716 (i = 5, j = 2, k = 3), A005709 (i = 6, j = 1, k = 2), A122522 (i = 6, j = 2, k = 2), A005710 (i = 7, j = 1, k = 2), A237718 (i = 7, j = 2, k = 3), A017903 (i = 8, j = 1, k = 2).

Programs

  • Magma
    [n le 7 select 1 else Self(n-5)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Nov 30 2016
    
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 70] (*  or *)
    CoefficientList[ Series[(1+x+x^2+x^3+x^4)/(1-x^5-x^7), {x, 0, 70}], x] (* Robert G. Wilson v, Nov 25 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,a+c}; NestList[nxt,{1,1,1,1,1,1,1},70][[;;,1]] (* Harvey P. Dale, Oct 22 2024 *)
  • PARI
    Vec(x*(1+x+x^2+x^3+x^4)/((1-x+x^2)*(1+x-x^3-x^4-x^5)) + O(x^100)) \\ Colin Barker, Oct 27 2016
    
  • SageMath
    @CachedFunction # a = A242763
    def a(n): return 1 if n<8 else a(n-5) +a(n-7)
    [a(n) for n in range(1,76)] # G. C. Greubel, Oct 23 2024

Formula

Generic a(n) = 1 for n <= i+j; a(n) = a(n-j) + (k-1)*a(n-(i+j)) for n>i+j where i = maturity period, j = conception period, k = growth factor.
G.f.: x*(1+x+x^2+x^3+x^4) / ((1-x+x^2)*(1+x-x^3-x^4-x^5)). - Colin Barker, Oct 09 2016
Generic g.f.: x*(Sum_{l=0..j-1} x^l) / (1-x^j-(k-1)*x^(i+j)), with i > 0, j > 0 and k > 1.

A287479 Expansion of g.f. (x + x^2)/(1 + 3*x^2).

Original entry on oeis.org

0, 1, 1, -3, -3, 9, 9, -27, -27, 81, 81, -243, -243, 729, 729, -2187, -2187, 6561, 6561, -19683, -19683, 59049, 59049, -177147, -177147, 531441, 531441, -1594323, -1594323, 4782969, 4782969, -14348907, -14348907, 43046721, 43046721, -129140163, -129140163, 387420489
Offset: 0

Views

Author

Keywords

Comments

This is the inverse binomial transform of A157241.
Successive differences of A157241 begin:
0, 1, 3, 3, -5, -21, -21, 43, 171, 171, ... = A157241
1, 2, 0, -8, -16, 0, 64, 128, 0, -512, ... = A088138
1, -2, -8, -8, 16, 64, 64, -128, -512, -512, ... = A138230
-3, -6, 0, 24, 48, 0, -192, -384, 0, 1536, ...
-3, 6, 24, 24, -48, -192, -192, 384, 1536, 1536, ...
9, 18, 0, -72, -144, 0, 576, 1152, 0, -4608, ...
9, -18, -72 -72, 144, 576, 576, -1152, -4608, -4608, ...
...
a(n) is the n-th term of the first column.
Successive differences of a(n) begin:
0, 1, 1, -3, -3, 9, 9, -27, -27, 81, ...
1, 0, -4, 0, 12, 0, -36, 0, 108, 0, ...
-1, -4, 4, 12, -12, -36, 36, 108, -108, -324, ...
-3, 8, 8, -24, -24, 72, 72, -216, -216, 648, ...
11, 0, -32, 0, 96, 0, -288, 0, 864, 0, ...
-11, -32, 32, 96, -96, -288, 288, 864, -864, -2592, ...
-21, 64, 64, -192, -192, 576, 576, -1728, -1728, 5184, ...
85, 0, -256, 0, 768, 0, -2304, 0, 6912, 0, ...
...
First column appears to be a subsequence of Jacobsthal numbers A001045 (the trisection A082311 is missing), second column is A104538, and third column is A137717.
a(n) = A128019(n-2) for n > 2. - Georg Fischer, Oct 23 2018

Crossrefs

Programs

  • Mathematica
    Join[{0}, LinearRecurrence[{0, -3}, {1, 1}, 40]]
    (* or, computation from b = A157241 : *)
    b[n_] := (Switch[Mod[n, 3], 0, (-1)^((n + 3)/3), 1, (-1)^((n + 5)/3), 2, (-1)^((n + 4)/3)*2]*2^n + 1)/3; tb = Table[b[n], {n, 0, 40}]; Table[ Differences[tb, n], {n, 0, 40}][[All, 1]]
  • PARI
    concat([0], Vec((x + x^2)/(1 + 3*x^2) + O(x^40))) \\ Felix Fröhlich, Oct 23 2018

Formula

a(n) = -3*a(n-2) for n > 2.
E.g.f.: (1 - cos(sqrt(3)*x) + sqrt(3)*sin(sqrt(3)*x))/3. - Stefano Spezia, Jul 15 2024

A376424 Nonnegative numbers m such that the run lengths in binary expansion of m, say (r_1, ..., r_k), satisfy r_1 + ... + r_i <> r_j + ... + r_k for any i in the interval 1..k-1 and j in the interval 2..k.

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 8, 14, 15, 16, 19, 23, 24, 25, 28, 29, 30, 31, 32, 35, 47, 48, 49, 60, 61, 62, 63, 64, 67, 68, 71, 76, 79, 80, 88, 95, 96, 97, 102, 103, 110, 111, 112, 113, 114, 115, 120, 121, 122, 123, 124, 125, 126, 127, 128, 131, 132, 135, 156, 159, 160
Offset: 1

Views

Author

Rémy Sigrist, Sep 22 2024

Keywords

Comments

Visually, if we consider a row of bricks of widths r_1, ..., r_k (in that order) above a row of widths r_k, ..., r_1 (in that order), we never have 4 bricks whose corners meet.
There are A108411(k) terms with k binary digits (ignoring leading zeros).

Examples

			The binary expansion of 35 is "100011", the corresponding run lengths are (1, 3, 2); the sums 1, 1+3 are distinct from the sums 3+2, 2, so 35 is a term. Visually, if we consider a row of bricks of widths 1, 3, 2 (in that order) above a row of widths 2, 3, 1 (in that order), we never have 4 bricks whose corners meet:
    .-.-----.---.
    | |     |   |
    .-.-.---.-.-.
    |   |     | |
    .---.-----.-.
		

Crossrefs

Programs

  • PARI
    toruns(n) = { my (r = []); while (n, my (v = valuation(n+n%2, 2)); n \= 2^v; r = concat(v, r)); r }
    is(n) = { if (n, my (r = toruns(n)); setintersect(vector(#r, k, vecsum(r[1..k])), vector(#r, k, vecsum(r[#r+1-k..#r])))==[vecsum(r)], 1); }

A107904 Expansion of (1+6x)/(1-12x^2).

Original entry on oeis.org

1, 6, 12, 72, 144, 864, 1728, 10368, 20736, 124416, 248832, 1492992, 2985984, 17915904, 35831808, 214990848, 429981696, 2579890176, 5159780352, 30958682112, 61917364224, 371504185344, 743008370688, 4458050224128, 8916100448256, 53496602689536, 106993205379072
Offset: 0

Views

Author

Paul Barry, May 27 2005

Keywords

Comments

Fourth binomial transform is A107903.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,12},{1,6},30] (* Harvey P. Dale, Sep 22 2014 *)

Formula

a(n) = ((1+sqrt(3))*(2*sqrt(3))^n + (1-sqrt(3))*(-2*sqrt(3))^n)/2.
a(2n) = 12^n, a(2n+1) = 6*12^n.
a(n) = 2^n*A108411(n+1). - R. J. Mathar, Aug 15 2023
From Amiram Eldar, Dec 06 2024: (Start)
Sum_{n>=0} 1/a(n) = 14/11.
Sum_{n>=0} (-1)^n/a(n) = 10/11. (End)

A227104 a(0)=-1, a(1)=3; a(n+2) = a(n+1) + a(n) + 2*A057078(n+1).

Original entry on oeis.org

-1, 3, 2, 3, 7, 10, 15, 27, 42, 67, 111, 178, 287, 467, 754, 1219, 1975, 3194, 5167, 8363, 13530, 21891, 35423, 57314, 92735, 150051, 242786, 392835, 635623, 1028458, 1664079, 2692539, 4356618, 7049155, 11405775, 18454930, 29860703, 48315635, 78176338, 126491971
Offset: 0

Views

Author

Paul Curtz, Jul 01 2013

Keywords

Comments

a(n+1)/a(n) tends to A001622 (the golden ratio) as n -> infinity.
a(n) and its differences:
. -1, 3, 2, 3, 7, 10, 15, 27, 42,
. 4, -1, 1, 4, 3, 5, 12, 15, 25,
. -5, 2, 3, -1, 2, 7, 3, 10, 19,
. 7, 1, -4, 3, 5, -4, 7, 9, 4,
. -6, -5, 7, 2, -9, 11, 2, -5, 15,
. 1, 12, -5, -11, 20, -9, -7, 20, -5,
. 11, -17, -6, 31, -29, 2, 27, -25, 2,
. -28, 11, 37, -60, 31, 25, -52, 27, 29,
. 39, 26, -97, 91, -6, -77, 79, 2, -81.
Main diagonal: -(-1)^floor(n/2)*A108411(n).

Examples

			a(6) = 2*F(6)-1 = 2*8-1 = 15; a(7) = 2*F(7)+1 = 2*13+1 = 27; a(8) = 2*F(8) = 2*21 = 42.
		

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    a[n_] := (m = Mod[n, 3]; 2*Fibonacci[n] - (3*m - 1)*(m - 2)/2); Table[a[n], {n, 0, 39}]  (* Jean-François Alcover, Jul 02 2013 *)

Formula

a(3n) = 2*F(3n)-1, a(3n+1) = 2*F(3n+1)+1, a(3n+2) = 2*F(3n+2), where F=A000045.
a(n+3) = a(n) + 4*F(n+1).
a(n) = A226328(n) + 1 for n>1.
a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-4) - a(n-5) and many others by telescoping the fundamental recurrence.
G.f.: -(1-3*x-3*x^2-2*x^3) / ( (1-x-x^2)*(1+x+x^2) ). [Bruno Berselli, Jul 02 2013]
a(n) = a(n-2) + 2*a(n-3) - a(n-4). [Bruno Berselli, Jul 02 2013]

Extensions

Edited by Bruno Berselli, Jul 02 2013
Previous Showing 31-36 of 36 results.