A171805
G.f.: Series reversion of x/P(x)^3 where P(x) is the g.f. for Partition numbers (A000041).
Original entry on oeis.org
1, 3, 18, 130, 1044, 8946, 80135, 741312, 7027515, 67911855, 666525630, 6625647054, 66570488901, 674964968175, 6897258376218, 70961851119848, 734455079297433, 7641851681095236, 79886815507105175, 838655487787502616, 8837797224686207976, 93454820274339167191
Offset: 1
G.f.: A(x) = x + 3*x^2 + 18*x^3 + 130*x^4 + 1044*x^5 + 8946*x^6 +...
where Series_Reversion(A(x)) = x/P(x)^3 = x*eta(x)^3 and
x*eta(x)^3 = x - 3*x^2 + 5*x^4 - 7*x^7 + 9*x^11 - 11*x^16 + 13*x^22 +...
-
InverseSeries[x QPochhammer[x]^3 + O[x]^30][[3]] (* Vladimir Reshetnikov, Nov 21 2016 *)
(* Calculation of constants {d,c}: *) eq = FindRoot[{r/QPochhammer[s]^3 == s, 1/s + 3*(s/r)^(1/3)*Derivative[0, 1][QPochhammer][s, s] == (3*(Log[1 - s] + QPolyGamma[0, 1, s]))/(s*Log[s])}, {r, 1/10}, {s, 1/8}, WorkingPrecision -> 1000]; {N[1/r /. eq, 120], val = Sqrt[r*(-1 + s)*s^2*(Log[s]^2/(6*Pi*(r*(-4*s*ArcTanh[1 - 2*s] + Log[1 - s]*(2 + 3*(-1 + s)*Log[1 - s] + Log[s] - s*Log[s])) - (-1 + s)*(-3*r*QPolyGamma[0, 1, s]^2 + r*QPolyGamma[1, 1, s] + QPolyGamma[0, 1, s]*(r*(2 - 6*Log[1 - s] + Log[s]) + 6*(r/s)^(2/3)*s^2*Log[s]* Derivative[0, 1][QPochhammer][s, s]) + s*Log[s]*((r/s)^(1/3)*s*(6*(r/s)^(1/3) * Log[1 - s] * Derivative[0, 1][QPochhammer][s, s] - 4*s*Log[s] * Derivative[0, 1][QPochhammer][s, s]^2 + (r/s)^(1/3)*s*Log[s]* Derivative[0, 2][QPochhammer][s, s]) - 2*r*Derivative[0, 0, 1][ QPolyGamma][0, 1, s])))))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 03 2023 *)
-
{a(n)=polcoeff(serreverse(x*eta(x+x*O(x^n))^3),n)}
A301624
G.f. A(x) satisfies: A(x) = Product_{k>=1} (1 - x^k*A(x)^k)^k.
Original entry on oeis.org
1, -1, -1, 4, 1, -17, -6, 118, -8, -876, 625, 5966, -7486, -41937, 75969, 306312, -768637, -2164992, 7487063, 14461466, -70259884, -89410774, 646971980, 459817892, -5861484630, -1128608133, 52082250637, -15894742662, -453574650852, 366848121166, 3866670213663, -5215687717614
Offset: 0
G.f. A(x) = 1 - x - x^2 + 4*x^3 + x^4 - 17*x^5 - 6*x^6 + 118*x^7 - 8*x^8 - 876*x^9 + 625*x^10 + ...
G.f. A(x) satisfies: A(x) = (1 - x*A(x)) * (1 - x^2*A(x)^2)^2 * (1 - x^3*A(x)^3)^3 * (1 - x^4*A(x)^4)^4 * ...
log(A(x)) = -x - 3*x^2/2 + 8*x^3/3 + 13*x^4/4 - 51*x^5/5 - 120*x^6/6 + 538*x^7/7 + 781*x^8/8 - 5419*x^9/9 - 3053*x^10/10 + ... + A281267(n)*x^n/n + ...
Cf.
A000219,
A006195,
A066398,
A073592,
A109085,
A181315,
A278428,
A281267,
A301455,
A301456,
A301625.
-
with(numtheory):
Order := 33:
Gser := solve(series(x*exp(add(sigma[2](n)*x^n/n, n = 1..32)), x) = y, x):
seq(coeff(Gser, y^k), k = 1..32); # Peter Bala, Feb 09 2020
A006195
Reversion of Jacobi theta_3.
Original entry on oeis.org
1, -2, 8, -40, 222, -1316, 8160, -52272, 343220, -2297682, 15623760, -107611608, 749209832, -5264005060, 37277153920, -265788870480, 1906489923022, -13747860118724, 99606357848920, -724732875917064, 5293303253527704, -38795196044205056
Offset: 0
-
# Using function CompInv from A357588.
CompInv(22, n -> if n = 1 then 1 elif issqr(n-1) then 2 else 0 fi); # Peter Luschny, Oct 05 2022
-
nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k*A[x]^k)/(1 - x^k*A[x]^k), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] * (-1)^Range[0, nmax] (* Vaclav Kotesovec, Sep 27 2023 *)
(* Calculation of constant d: *) 1/r /. FindRoot[{QPochhammer[-1, r*s] == 2*s*QPochhammer[r*s], (2* QPochhammer[r*s]*(-Log[r*s] + Log[1 - r*s] + QPolyGamma[0, 1, r*s])) / Log[r*s] + r*(Derivative[0, 1][QPochhammer][-1, r*s] - 2*s*Derivative[0, 1][QPochhammer][r*s, r*s]) == 0}, {r, 1/8}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 27 2023 *)
-
N=66; x='x+O('x^N); /* that many terms */
Vec(serreverse(x*sum(n=-N,N,x^(n^2)))) /* show terms */ /* Joerg Arndt, May 25 2011 */
A171804
G.f. satisfies: A(x) = P(x*A(x)^3) where A(x/P(x)^3) = P(x) is the g.f. for partition numbers (A000041).
Original entry on oeis.org
1, 1, 5, 33, 252, 2090, 18299, 166450, 1557595, 14898228, 145003996, 1431487820, 14299208690, 144262270360, 1467857359738, 15045486643137, 155208575698230, 1610201799670560, 16788969497000365, 175838914655128068
Offset: 0
From _Peter Bala_, Nov 12 2024: (Start)
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + ...
I(P(x)) = 1 + x + 3*x^2 + 10*x^3 + 38*x^4 + 153*x^5 + 646*x^6 + 2816*x^7 + ...
I^2(P(x)) = 1 + x + 4*x^2 + 20*x^3 + 115*x^4 + 714*x^5 + 4669*x^6 + 31671*x^7 + ...
I^3(P(x)) = 1 + x + 5*x^2 + 33*x^3 + 252*x^4 + 2090*x^5 + 18299*x^6 + 166450*x^7 + ... = the g.f. A(x). (End)
-
a(n)=polcoeff((1/x*serreverse(x*eta(x+x*O(x^n))^3))^(1/3), n)
-
{a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*(A^3+x*O(x^n))^k))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^(3*m)/prod(k=1, m, (1-x^k+x*O(x^n))))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), x^(m^2)*A^(3*m)/prod(k=1, m, (1-x^k)*(1-x^k*A^3+x*O(x^n))))); polcoeff(A, n)}
A184362
G.f.: eta(x) + x*eta'(x).
Original entry on oeis.org
1, -2, -3, 0, 0, 6, 0, 8, 0, 0, 0, 0, -13, 0, 0, -16, 0, 0, 0, 0, 0, 0, 23, 0, 0, 0, 27, 0, 0, 0, 0, 0, 0, 0, 0, -36, 0, 0, 0, 0, -41, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52, 0, 0, 0, 0, 0, 58, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -71, 0, 0, 0, 0, 0, 0, -78, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 0, 0, 0
Offset: 0
G.f.: A(x) = 1 - 2*x - 3*x^2 + 6*x^5 + 8*x^7 - 13*x^12 - 16*x^15 + 23*x^22 + 27*x^26 - 36*x^35 - 41*x^40 +...
Illustrate the property: [x^n] A(x)/eta(x)^(n+1) = 0
in the table of coefficients of A(x)/eta(x)^(n+1) for n=0..10:
[1, -1, -3, -4, -7, -6, -12, -8, -15, -13, -18,...,-sigma(n),...];
[1,(0), -2, -6, -15, -28, -55, -90, -154, -240, -378,...];
[1, 1,(0), -5, -20, -54, -130, -275, -555, -1050, -1924,...];
[1, 2, 3,(0), -17, -72, -221, -572, -1350, -2958, -6160,...];
[1, 3, 7, 10,(0), -63, -287, -930, -2580, -6475, -15162,...];
[1, 4, 12, 26, 38,(0), -253, -1196, -4059, -11780, -31027,...];
[1, 5, 18, 49, 105, 153,(0), -1062, -5175, -18140, -54544,...];
[1, 6, 25, 80, 210, 442, 646,(0), -4615, -22990, -82671,...];
[1, 7, 33, 120, 363, 924, 1926, 2816,(0), -20570, -104285,...];
[1, 8, 42, 170, 575, 1668, 4161, 8602, 12585,(0), -93538,...];
[1, 9, 52, 231, 858, 2756, 7766, 19071, 39182, 57343,(0),...]; ...
so that the coefficient of x^n in A(x)/eta(x)^(n+1) is zero for n>=1.
Note: the g.f.s of the diagonals in the above table are powers of G(x),
where G(x) = 1/eta(x*G(x)) is the g.f. of A109085.
The g.f. of A184363 equals:
A(x)*eta(x)^2 = 1 - 4*x + 10*x^3 - 21*x^6 + 39*x^10 - 66*x^15 +...+ (-1)^n*(2n+1)*(n^2+n+6)/6*x^(n(n+1)/2) +...
A210043
G.f. A(x) satisfies: A(x) = 1 / Product_{n>=1} (1 - x^n*A(x)^(n-1)).
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 73, 211, 629, 1912, 5913, 18531, 58739, 187963, 606416, 1970326, 6441623, 21175056, 69946082, 232054411, 772886274, 2583325555, 8662455004, 29132638803, 98240253058, 332105822674, 1125273780474, 3820859749502, 12999287203624
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 26*x^5 + 73*x^6 + 211*x^7 +...
The g.f. satisfies the q-series identities:
(0) A(x) = 1/( (1-x) * (1-x^2*A(x)) * (1-x^3*A(x)^2) * (1-x^4*A(x)^3) *...).
(1) A(x) = 1 + x/(1-x*A(x)) + x^2/((1-x*A(x))*(1-x^2*A(x)^2)) + x^3/((1-x*A(x))*(1-x^2*A(x)^2)*(1-x^3*A(x)^3)) +...
(2) A(x) = 1 + x/(1-x) + x^2*A(x)/((1-x)*(1-x^2*A(x))) + x^3*A(x)^2/((1-x)*(1-x^2*A(x))*(1-x^3*A(x)^2)) +...
(3) A(x) = 1 + x/((1-x)*(1-x*A(x))) + x^4*A(x)^2/((1-x)*(1-x^2*A(x))*(1-x*A(x))*(1-x^2*A(x)^2)) + x^9*A(x)^6/((1-x)*(1-x^2*A(x))*(1-x^3*A(x)^2)*(1-x*A(x))*(1-x^2*A(x)^2)*(1-x^3*A(x)^3)) +...
(4) A(x) = exp( x/(1-x*A(x)) + x^2/(2*(1-x^2*A(x)^2)) + x^3/(3*(1-x^3*A(x)^3)) +...).
-
nmax = 30; A[] = 0; Do[A[x] = 1/(1 - x)/Product[1 - x^k*A[x]^(k - 1), {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 28 2023 *)
(* Calculation of constants {d,c}: *) {1/r, -s*Log[r*s]* Sqrt[(-1 + r*s)*(((-2 + s)*Log[r*s] + (-1 + s)*Log[1 - r*s] + (-1 + s)*QPolyGamma[0, Log[1/s]/Log[r*s], r*s])/ (2* Pi*(Log[r*s]*(4*r*(-1 + s)*s*ArcTanh[1 - 2*r*s] + 2*(-3 + s)*(-1 + r*s)*Log[r*s]^2 + (2 - 2*s + (-5 + 3*s)*(-1 + r*s)*Log[r*s])* Log[1 - r*s] + (-1 + s)*(-1 + r*s)*Log[1 - r*s]^2) + (-1 + r*s)* Log[r*s]*((-5 + 3*s)*Log[r*s] + 2*(-1 + s)*(1 + Log[1 - r*s]))* QPolyGamma[0, Log[1/s]/Log[r*s], r*s] + (-1 + s)*(-1 + r*s)*Log[r*s]* QPolyGamma[0, Log[1/s]/Log[r*s], r*s]^2 + (-1 + r*s)*((-1 + s)*(2*Log[1/s] + Log[r*s])* QPolyGamma[1, Log[1/s]/Log[r*s], r*s] + r*s*Log[r*s]^2*((-r)*s^3*Log[r*s]* Derivative[0, 2][QPochhammer][1/s, r*s] - 2*(-1 + s)* Derivative[0, 0, 1][QPolyGamma][0, Log[1/s]/Log[r*s], r*s])))))]} /. FindRoot[{s - 1 == s^2*QPochhammer[1/s, r*s], (s - 2)/s + ((s - 1)*(Log[1 - r*s] + QPolyGamma[0, Log[1/s]/Log[r*s], r*s]))/(s*Log[r*s]) + r*s^2*Derivative[0, 1][QPochhammer][1/s, r*s] == 0}, {r, 1/4}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 28 2023 *)
-
{a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*A^(k-1)+x*O(x^n)))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^(m-1)/prod(k=1, m, (1-x^k*A^(k-1)+x*O(x^n))))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m/prod(k=1, m, (1-x^k*A^k +x*O(x^n))))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), x^(m^2)*A^(m^2-m)/prod(k=1, m, (1-x^k*A^(k-1))*(1-x^k*A^k+x*O(x^n))))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m/m/(1-x^m*A^m +x*O(x^n))))); polcoeff(A, n)}
for(n=0,35,print1(a(n),", "))
A238440
Expansion of 1/E(q/E(q)) where E(q) = Product_{n>=1} (1 - q^n).
Original entry on oeis.org
1, 1, 3, 9, 27, 79, 229, 657, 1873, 5304, 14944, 41895, 116947, 325133, 900617, 2486183, 6841490, 18770754, 51358188, 140154540, 381540434, 1036261537, 2808328337, 7594958401, 20499680869, 55227373266, 148520150761, 398726637407, 1068701794158, 2859956501816, 7642086948143, 20391083977989, 54333644617311
Offset: 0
Cf.
A109085: G.f. 1/E(q/E(q/E(q/E(q/E(q/E...))))).
A301577
G.f. A(x) satisfies: A(x) = Product_{k>=1} 1/(1 - k*x^k*A(x)^k).
Original entry on oeis.org
1, 1, 4, 16, 75, 366, 1887, 10010, 54493, 302302, 1703599, 9723774, 56101292, 326640411, 1916800425, 11325242328, 67316128903, 402245682741, 2414978550718, 14560379165160, 88122911824659, 535188028077586, 3260549998701951, 19921639754064470, 122041156818328779
Offset: 0
G.f. A(x) = 1 + x + 4*x^2 + 16*x^3 + 75*x^4 + 366*x^5 + 1887*x^6 + 10010*x^7 + 54493*x^8 + 302302*x^9 + ...
G.f. A(x) satisfies: A(x) = 1/((1 - x*A(x)) * (1 - 2*x^2*A(x)^2) * (1 - 3*x^3*A(x)^3) * ...).
log(A(x)) = x + 7*x^2/2 + 37*x^3/3 + 219*x^4/4 + 1276*x^5/5 + 7687*x^6/6 + 46551*x^7/7 + 285043*x^8/8 + ... + A297329(n)*x^n/n + ...
A192783
G.f. satisfies: A(x) = Product_{n>=1} 1/(1 - x^n*A(x)^(n^3)).
Original entry on oeis.org
1, 1, 3, 16, 119, 1145, 13301, 180464, 2821941, 50400230, 1022250876, 23424407915, 602724515761, 17299947151776, 550101222059396, 19246320555772626, 736247255316380311, 30620337253882961105, 1377609185722013042566, 66750666290443384609574
Offset: 0
G.f: A(x) = 1 + x + 3*x^2 + 16*x^3 + 119*x^4 + 1145*x^5 + 13301*x^6 +...
The g.f. A = A(x) satisfies:
A = 1/((1 - x*A)*(1 - x^2*A^8)*(1 - x^3*A^27)*(1 - x^4*A^64)*...),
as well as the logarithmic series:
log(A) = x*A + x^2*(A^2 + 2*A^8)/2 + x^3*(A^3 + 3*A^27)/3 + x^4*(A^4 + 2*A^16 + 4*A^64)/4 + x^5*(A^5 + 5*A^125)/5 + x^6*(A^6 + 2*A^24 + 3*A^54 + 6*A^216)/6 +...
-
{a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, 1-x^k*(A+x*O(x^n))^(k^3))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (x^m/m)*sumdiv(m, d, d*(A+x*O(x^n))^(m*d^2))))); polcoeff(A, n)}
A301625
G.f. A(x) satisfies: A(x) = Product_{k>=1} ((1 + x^k*A(x)^k)/(1 - x^k*A(x)^k))^k.
Original entry on oeis.org
1, 2, 10, 60, 398, 2820, 20892, 159868, 1253758, 10024070, 81400672, 669532924, 5566386324, 46701736772, 394910202608, 3362210548344, 28797181196766, 247955463799812, 2145088563952510, 18636002388075260, 162523319555310664, 1422259430668179592, 12485554521209720492, 109922263517662775292
Offset: 0
G.f. A(x) = 1 + 2*x + 10*x^2 + 60*x^3 + 398*x^4 + 2820*x^5 + 20892*x^6 + 159868*x^7 + 1253758*x^8 + ...
G.f. A(x) satisfies: A(x) = ((1 + x*A(x)) * (1 + x^2*A(x)^2)^2 * (1 + x^3*A(x)^3)^3 * ...)/((1 - x*A(x)) * (1 - x^2*A(x)^2)^2 * (1 - x^3*A(x)^3)^3 * ...).
log(A(x)) = 2*x + 16*x^2/2 + 128*x^3/3 + 1056*x^4/4 + 8952*x^5/5 + 77200*x^6/6 + 673948*x^7/7 + 5937792*x^8/8 + ... + A270924(n)*x^n/n + ...
Comments