A289348
Coefficients in expansion of E_6^(5/6).
Original entry on oeis.org
1, -420, -31500, -4724160, -1314429900, -440028142344, -162555920654400, -63990327056960640, -26341675849615282380, -11210298679649742846180, -4895195936831699458605912, -2181913188022929464292248640
Offset: 0
E_6^(k/12):
A109817 (k=1),
A289325 (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9), this sequence (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(5/6), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289349
Coefficients in expansion of E_6^(11/12).
Original entry on oeis.org
1, -462, -24948, -2518824, -654112074, -212483064024, -76819071738024, -29728723632736128, -12066341379893331300, -5073593348593538950566, -2192302482140061697816872, -968086916154014421082349304, -435126775136273350146250044888
Offset: 0
E_6^(k/12):
A109817 (k=1),
A289325 (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10), this sequence (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(11/12), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289567
Coefficients in expansion of 1/E_6^(1/2).
Original entry on oeis.org
1, 252, 103572, 46355904, 21754545876, 10493652271032, 5153897870227008, 2563741466120209536, 1287429765611338091988, 651251466581383330576956, 331360676706818772917367912, 169399388595923901462013678656
Offset: 0
E_6^(k/12):
A289570 (k=-18),
A000706 (k=-12), this sequence (k=-6),
A109817 (k=1),
A289325 (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A110150
G.f.: 4th root of Eisenstein series E_10 (cf. A013974).
Original entry on oeis.org
1, -66, -40392, -9009264, -3725341158, -1400292801072, -604993149612720, -262280205541007808, -118717180239835505592, -54520207050101542651506, -25525844887805197307977968, -12095360676632550886664063760, -5797006133905562955666277287792, -2803076705590018145443840156918512
Offset: 0
-
nmax = 20; s = 10; CoefficientList[Series[(1 - 2*s/BernoulliB[s] * Sum[DivisorSigma[s - 1, k]*x^k, {k, 1, nmax}])^(1/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 02 2017 *)
A294976
Coefficients in expansion of (E_6/E_2^6)^(1/12).
Original entry on oeis.org
1, -30, -11340, -3912600, -1520905170, -636170644008, -278687199310200, -126000360658968000, -58290111778749466140, -27440829122946510954630, -13096614404248661886145848, -6320198941502349713305002120, -3077986352751848627729986859400
Offset: 0
-
terms = 13;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E6[x]/E2[x]^6)^(1/12) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A303055
Expansion of (1-504*x)^(1/12).
Original entry on oeis.org
1, -42, -9702, -3124044, -1148086170, -453264419916, -187198205425308, -79746435511181208, -34749509273997211386, -15405615778138763714460, -6923283730695560413278324, -3145688371456037358687733032, -1442298118312593128958325595172
Offset: 0
A377975
Expansion of the 6048th root of the series 2*E_6(x) - E_6(x)^2, where E_6 is the Eisenstein series of weight 6.
Original entry on oeis.org
1, 0, -42, -2772, -5399688, -704781084, -943173698460, -180121119486672, -188146584694894350, -46293152603021155692, -40574254265781269371884, -11963000065787771567311500, -9221266403646163252100062068, -3107813621461888912485774582588, -2176998806586925223600540321844120
Offset: 0
-
with(numtheory):
E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
seq(coeftayl((2*E(6) - E(6)^2)^(1/6048), q = 0, n),n = 0..20);
-
terms = 20; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(2*E6[x] - E6[x]^2)^(1/6048), {x, 0, terms}], x] (* Vaclav Kotesovec, Aug 03 2025 *)
A377977
Expansion of the 288th root of the series 3*E_4(x) - 2*E_6(x), where E_4(x) and E_6(x) are the Eisenstein series of weight 4 and 6.
Original entry on oeis.org
1, 6, -5028, 5704188, -7284893010, 9926715853068, -14092613175928308, 20580782244716567592, -30684764269418402550900, 46478269075227117026711730, -71284154421570122590465786956, 110437754516732491586466670733772, -172528135408494997625486967978486588, 271418933884659782820559630827037837908
Offset: 0
-
with(numtheory):
E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
seq(coeftayl((3*E(4) - 2*E(6))^(1/288), q = 0, n), n = 0..20);
-
terms = 20; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(3*E4[x] - 2*E6[x])^(1/288), {x, 0, terms}], x] (* Vaclav Kotesovec, Aug 03 2025 *)
Original entry on oeis.org
42, 11949, 4265002, 1713048225, 733858320426, 327479221781677, 150310620492466218, 70428822653977730817, 33523597190772239402026, 16156445902957272648713901, 7865129058155349010009168938, 3860735065245250133098748713633
Offset: 1
A289570
Coefficients in expansion of 1/E_6^(3/2).
Original entry on oeis.org
1, 756, 501228, 311671584, 187266950892, 110121960638088, 63808586297102304, 36578013578688141504, 20797655630223547290348, 11749541312124028845092052, 6603568491137827506152966712, 3695593478842608407829235523808
Offset: 0
E_6^(k/12): this sequence (k=-18),
A000706 (k=-12),
A289567 (k=-6),
A109817 (k=1),
A289325 (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(-3/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
Comments