cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A319649 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{j=1..n} j^k * floor(n/j).

Original entry on oeis.org

1, 1, 3, 1, 4, 5, 1, 6, 8, 8, 1, 10, 16, 15, 10, 1, 18, 38, 37, 21, 14, 1, 34, 100, 111, 63, 33, 16, 1, 66, 278, 373, 237, 113, 41, 20, 1, 130, 796, 1335, 999, 489, 163, 56, 23, 1, 258, 2318, 4957, 4461, 2393, 833, 248, 69, 27, 1, 514, 6820, 18831, 20583, 12513, 4795, 1418, 339, 87, 29
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 09 2018

Keywords

Examples

			Square array begins:
   1,   1,    1,    1,     1,      1,  ...
   3,   4,    6,   10,    18,     34,  ...
   5,   8,   16,   38,   100,    278,  ...
   8,  15,   37,  111,   373,   1335,  ...
  10,  21,   63,  237,   999,   4461,  ...
  14,  33,  113,  489,  2393,  12513,  ...
		

Crossrefs

Columns k=0..5 give A006218, A024916, A064602, A064603, A064604, A248076.
Cf. A082771, A109974, A319194 (diagonal).

Programs

  • Mathematica
    Table[Function[k, Sum[j^k Floor[n/j] , {j, 1, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[1/(1 - x) Sum[j^k x^j/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, Sum[DivisorSigma[k, j], {j, 1, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
  • Python
    from itertools import count, islice
    from math import isqrt
    from sympy import bernoulli
    def A319649_T(n,k): return (((s:=isqrt(n))+1)*(bernoulli(k+1)-bernoulli(k+1,s+1))+sum(w**k*(k+1)*((q:=n//w)+1)-bernoulli(k+1)+bernoulli(k+1,q+1) for w in range(1,s+1)))//(k+1) + int(k==0)
    def A319649_gen(): # generator of terms
         return (A319649_T(k+1,n-k-1) for n in count(1) for k in range(n))
    A319649_list = list(islice(A319649_gen(),30)) # Chai Wah Wu, Oct 24 2023

Formula

G.f. of column k: (1/(1 - x)) * Sum_{j>=1} j^k*x^j/(1 - x^j).
A(n,k) = Sum_{j=1..n} sigma_k(j).

A321258 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = sigma_k(n) - n^k.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 1, 0, 1, 1, 5, 1, 3, 0, 1, 1, 9, 1, 6, 1, 0, 1, 1, 17, 1, 14, 1, 3, 0, 1, 1, 33, 1, 36, 1, 7, 2, 0, 1, 1, 65, 1, 98, 1, 21, 4, 3, 0, 1, 1, 129, 1, 276, 1, 73, 10, 8, 1, 0, 1, 1, 257, 1, 794, 1, 273, 28, 30, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 01 2018

Keywords

Comments

A(n,k) is the sum of k-th powers of proper divisors of n.

Examples

			Square array begins:
  0,  0,   0,   0,   0,    0,  ...
  1,  1,   1,   1,   1,    1,  ...
  1,  1,   1,   1,   1,    1,  ...
  2,  3,   5,   9,  17,   33,  ...
  1,  1,   1,   1,   1,    1,  ...
  3,  6,  14,  36,  98,  276,  ...
		

Crossrefs

Columns k=0..5 give A032741, A001065, A067558, A276634, A279363, A279364.
Cf. A109974, A285425, A286880, A321259 (diagonal).

Programs

  • Mathematica
    Table[Function[k, DivisorSigma[k, n] - n^k][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[j^k x^(2 j)/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten

Formula

G.f. of column k: Sum_{j>=1} j^k*x^(2*j)/(1 - x^j).
Dirichlet g.f. of column k: zeta(s-k)*(zeta(s) - 1).
A(n,k) = 1 if n is prime.

A322081 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} (-1)^(n/d+1)*d^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 1, 3, 4, -1, 1, 7, 10, 1, 2, 1, 15, 28, 11, 6, 0, 1, 31, 82, 55, 26, 4, 2, 1, 63, 244, 239, 126, 30, 8, -2, 1, 127, 730, 991, 626, 196, 50, 1, 3, 1, 255, 2188, 4031, 3126, 1230, 344, 43, 13, 0, 1, 511, 6562, 16255, 15626, 7564, 2402, 439, 91, 6, 2, 1, 1023, 19684, 65279, 78126, 45990, 16808, 3823, 757, 78, 12, -2
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,     1,     1,  ...
   0,  1,   3,    7,    15,    31,  ...
   2,  4,  10,   28,    82,   244,  ...
  -1,  1,  11,   55,   239,   991,  ...
   2,  6,  26,  126,   626,  3126,  ...
   0,  4,  30,  196,  1230,  7564,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, Sum[(-1)^(n/d + 1) d^k, {d, Divisors[n]}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[j^k x^j/(1 + x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={sumdiv(n, d, (-1)^(n/d+1)*d^k)}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} j^k*x^j/(1 + x^j).

A322082 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n, n/d odd} d^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 4, 4, 1, 1, 8, 10, 4, 2, 1, 16, 28, 16, 6, 2, 1, 32, 82, 64, 26, 8, 2, 1, 64, 244, 256, 126, 40, 8, 1, 1, 128, 730, 1024, 626, 224, 50, 8, 3, 1, 256, 2188, 4096, 3126, 1312, 344, 64, 13, 2, 1, 512, 6562, 16384, 15626, 7808, 2402, 512, 91, 12, 2, 1, 1024, 19684, 65536, 78126, 46720, 16808, 4096, 757, 104, 12, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,     1,     1,  ...
  1,  2,   4,    8,    16,    32,  ...
  2,  4,  10,   28,    82,   244,  ...
  1,  4,  16,   64,   256,  1024,  ...
  2,  6,  26,  126,   626,  3126,  ...
  2,  8,  40,  224,  1312,  7808,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, Sum[Boole[OddQ[n/d]] d^k, {d, Divisors[n]}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[j^k x^j/(1 - x^(2 j)), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={sumdiv(n, d, if(n/d%2, d^k))}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} j^k*x^j/(1 - x^(2*j)).

A322084 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n, n/d==1 (mod 4)} d^k - Sum_{d|n, n/d==3 (mod 4)} d^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 4, 2, 1, 1, 8, 8, 4, 2, 1, 16, 26, 16, 6, 0, 1, 32, 80, 64, 26, 4, 0, 1, 64, 242, 256, 126, 32, 6, 1, 1, 128, 728, 1024, 626, 208, 48, 8, 1, 1, 256, 2186, 4096, 3126, 1280, 342, 64, 7, 2, 1, 512, 6560, 16384, 15626, 7744, 2400, 512, 73, 12, 0, 1, 1024, 19682, 65536, 78126, 46592, 16806, 4096, 703, 104, 10, 0
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,     1,     1,  ...
  1,  2,   4,    8,    16,    32,  ...
  0,  2,   8,   26,    80,   242,  ...
  1,  4,  16,   64,   256,  1024,  ...
  2,  6,  26,  126,   626,  3126,  ...
  0,  4,  32,  208,  1280,  7744,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[j^k x^j/(1 + x^(2 j)), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={sumdiv(n, d, if(d%2, (-1)^((d-1)/2)*(n/d)^k))}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} j^k*x^j/(1 + x^(2*j)).

A108639 a(n) = Sum_{k=1..n} sigma_{n-k}(k), where sigma_m(k) = Sum_{j|k} j^m.

Original entry on oeis.org

1, 3, 6, 13, 29, 77, 229, 771, 2863, 11573, 50365, 234161, 1156039, 6031751, 33130187, 190929778, 1151198268, 7243777234, 47462906927, 323188163753, 2282922216819, 16701529748621, 126359471558613, 987316752551419
Offset: 1

Views

Author

Leroy Quet, Jul 06 2005

Keywords

Comments

Row sums of number triangle A109974. - Paul Barry, Jul 06 2005

Examples

			a(5) = 1^4 + (1^3 + 2^3) + (1^2 + 3^2) + (1^1 + 2^1 + 4^1) + (1^0 + 5^0) = 1 + 1 + 8 + 1 + 9 + 1 + 2 + 4 + 1 + 1 = 29.
		

Crossrefs

Cf. A109974, A245466 (with k instead of n-k).

Programs

  • Magma
    A108639:= func< n | (&+[DivisorSigma(j, n-j): j in [0..n-1]]) >;
    [A108639(n): n in [1..30]]; // G. C. Greubel, Oct 18 2023
    
  • Maple
    with(numtheory): s:=proc(n,k) local div: div:=divisors(n): sum(div[j]^k,j=1..tau(n)) end: a:=n->sum(s(i,n-i),i=1..n): seq(a(n),n=1..27); # Emeric Deutsch, Jul 13 2005
  • Mathematica
    Array[Sum[DivisorSigma[# - k, k], {k, #}] &, 24] (* Michael De Vlieger, Dec 23 2017 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k, n-k)); \\ Michel Marcus, Dec 24 2017
    
  • SageMath
    def A108639(n): return sum(sigma(n-j, j) for j in range(n))
    [A108639(n) for n in range(1,31)] # G. C. Greubel, Oct 18 2023

Extensions

More terms from Emeric Deutsch, Jul 13 2005
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 08 2007

A322103 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} sigma_k(d).

Original entry on oeis.org

1, 1, 3, 1, 4, 3, 1, 6, 5, 6, 1, 10, 11, 11, 3, 1, 18, 29, 27, 7, 9, 1, 34, 83, 83, 27, 20, 3, 1, 66, 245, 291, 127, 66, 9, 10, 1, 130, 731, 1091, 627, 290, 51, 26, 6, 1, 258, 2189, 4227, 3127, 1494, 345, 112, 18, 9, 1, 514, 6563, 16643, 15627, 8330, 2403, 668, 102, 28, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
  1,   1,   1,    1,     1,     1,  ...
  3,   4,   6,   10,    18,    34,  ...
  3,   5,  11,   29,    83,   245,  ...
  6,  11,  27,   83,   291,  1091,  ...
  3,   7,  27,  127,   627,  3127,  ...
  9,  20,  66,  290,  1494,  8330,  ...
		

Crossrefs

Columns k=0..3 give A007425, A007429, A007433, A321140.
Cf. A109974, A321141 (diagonal), A356045.

Programs

  • Mathematica
    Table[Function[k, Sum[DivisorSigma[k, d], {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[DivisorSigma[k, j] x^j/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={sumdiv(n, d, d^k*numdiv(n/d))}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} sigma_k(j)*x^j/(1 - x^j).
A(n,k) = Sum_{d|n} d^k*tau(n/d).

A236328 a(n) = sigma(n,1) + sigma(n,2) + ... + sigma(n,n).

Original entry on oeis.org

1, 8, 42, 374, 3910, 57210, 960806, 19261858, 435877581, 11123320196, 313842837682, 9729290348244, 328114698808286, 11967567841654606, 469172063576559644, 19676848703371278522, 878942778254232811954, 41661071646298278566886, 2088331858752553232964218
Offset: 1

Views

Author

Colin Barker, Jan 22 2014

Keywords

Comments

Sigma(n,k) is the sum of the k-th powers of the divisors of n.
The sequence seems to be strictly increasing. - Chayim Lowen, Aug 05 2015.
This is true. Moreover, subsequent ratios a(n+1)/a(n) steadily grow for n>3. The difference of subsequent ratios tends to the limit e = 2.718... The reason is that a(n) roughly behaves like n^n; already the second largest term in the sum is smaller by a factor 2^n (for even n) or by a factor 3^n (for n=6k+3) etc. - M. F. Hasler, Aug 16 2015

Examples

			a(4) = sigma(4,1) + sigma(4,2) + sigma(4,3) + sigma(4,4) = 7 + 21 + 73 + 273 = 374.
		

Crossrefs

Programs

  • Maple
    seq(add(numtheory:-sigma[k](n), k=1..n), n=1..50); # Robert Israel, Aug 04 2015
  • Mathematica
    Table[Sum[DivisorSigma[i, n], {i, n}], {n, 19}] (* Michael De Vlieger, Aug 06 2015 *)
    f[n_] := Sum[DivisorSigma[i, n], {i, n}]; (* OR *) f[n_] := Block[{d = Rest@Divisors@n}, n + Total[(d^(n + 1) - d)/(d - 1)]]; (* then *) Array[f, 19] (* Robert G. Wilson v, Aug 06 2015 *)
  • PARI
    vector(30, n, sum(k=1, n, sigma(n, k)))
    
  • PARI
    vector(30, n, n + sumdiv(n, d, if (d>1,(d^(n+1)-d)/(d-1)))) \\ Michel Marcus, Aug 04 2015

Formula

a(n) = n + Sum_{d|n, d>1} d*(d^n-1)/(d-1). - Chayim Lowen, Aug 02 2015
a(n) >= n*(n^n+n-2)/(n-1) for n>1. - Chayim Lowen, Aug 05 2015
a(n) = A065805(n)-A000005(n). - Chayim Lowen, Aug 11 2015
a(n) ~ n^n. - Vaclav Kotesovec, Aug 04 2025

A271606 Number of numbers k such that sigma_e(k) = n for some e > 0.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 0, 1, 2, 0, 1, 1, 0, 0, 3, 0, 1, 0, 2, 0, 1, 2, 2, 1, 0, 0, 1, 0, 1, 1, 1, 0, 3, 0, 1, 0, 0, 0, 3, 0, 2, 0, 0, 0, 2, 0, 2, 1, 0, 0, 3, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 5, 1, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 3, 1, 0, 0, 0, 0, 3, 2, 0, 1, 0, 0, 4, 0, 2, 0, 0
Offset: 1

Views

Author

Keywords

Comments

We can't just define this as number of pairs k, e with e > 0 that have sigma_e(k) = n, because sigma_e(1) = 1 for all e.

Examples

			a(28) = 2 because 28 = sigma_1(12) = 1+2+3+4+6+12 and also 28 = sigma_3(3) = 1^3+3^3.
		

Crossrefs

Programs

  • PARI
    alist(n)=my(r=vector(n),s);r[1]=1;for(k=2,n,e=1;while((s=sigma(k,e))<=n,r[s]++;e++));r

A322080 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{p|n, p prime} p^k.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 0, 4, 3, 1, 0, 8, 9, 2, 1, 0, 16, 27, 4, 5, 2, 0, 32, 81, 8, 25, 5, 1, 0, 64, 243, 16, 125, 13, 7, 1, 0, 128, 729, 32, 625, 35, 49, 2, 1, 0, 256, 2187, 64, 3125, 97, 343, 4, 3, 2, 0, 512, 6561, 128, 15625, 275, 2401, 8, 9, 7, 1, 0, 1024, 19683, 256, 78125, 793, 16807, 16, 27, 29, 11, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
  0,  0,   0,    0,    0,     0,  ...
  1,  2,   4,    8,   16,    32,  ...
  1,  3,   9,   27,   81,   243,  ...
  1,  2,   4,    8,   16,    32,  ...
  1,  5,  25,  125,  625,  3125,  ...
  2,  5,  13,   35,   97,   275,  ...
		

Crossrefs

Columns k=0..4 give A001221, A008472, A005063, A005064, A005065.
Cf. A109974, A200768 (diagonal), A285425, A286880, A321258.

Programs

  • Mathematica
    Table[Function[k, Sum[Boole[PrimeQ[d]] d^k, {d, Divisors[n]}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[Prime[j]^k x^Prime[j]/(1 - x^Prime[j]), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={vecsum([p^k | p<-factor(n)[,1]])}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} prime(j)^k*x^prime(j)/(1 - x^prime(j)).
Previous Showing 11-20 of 27 results. Next