cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 51 results. Next

A229023 Numerators of the main diagonal of A225825 difference table, a sequence linked to Bernoulli, Genocchi and Clausen numbers.

Original entry on oeis.org

1, -2, 16, -424, 2944, -70240, 70873856, -212648576, 98650550272, -90228445612544, 19078660567134208, -2034677178643867648, 123160010212358914048, -19182197131374977024, 228111332170536254898176, -51166426240975948419354886144
Offset: 0

Views

Author

Keywords

Comments

a(n) is divisible by 2^n and congruent to 1, 2, 4, 5, 7 or 8 mod 9.

Examples

			1, -2/3, 16/15, -424/105, 2944/105, -70240/231, 70873856/15015, ...
		

Crossrefs

Cf. A181131 (denominators), A225825, A110501 (Genocchi numbers), A141056 (Clausen numbers), A212196 (Bernoulli medians), A005439 (Genocchi medians).

Programs

  • Mathematica
    nmax = 30; Clausen[n_] := Times @@ Select[Divisors[n] + 1, PrimeQ]; t = Join[{1}, Table[Numerator[BernoulliB[n, 1/2] - (n + 1)*EulerE[n, 0]]/Clausen[n], {n, 1, nmax}]]; dt = Table[Differences[t, n], {n, 0, nmax}]; Diagonal[dt] // Numerator

A296941 Expansion of e.g.f. arcsin(x*tan(x/2)) (even powers only).

Original entry on oeis.org

0, 1, 1, 18, 227, 12125, 542448, 55071205, 5492843269, 905996551626, 159770279801855, 39299019878991521, 10721872262093222016, 3707660329253983397113, 1438816154956071399594457, 668949924061617421125859650, 348908555505788456739965412203
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 22 2017

Keywords

Examples

			arcsin(x*tan(x/2)) = x^2/2! + x^4/4! + 18*x^6/6! + 227*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[ArcSin[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] arcsin(x*tan(x/2)).

A296942 Expansion of e.g.f. arcsinh(x*tan(x/2)) (even powers only).

Original entry on oeis.org

0, 1, 1, -12, -193, 5195, 397248, -9589391, -3147743231, -10931156748, 65632780196255, 4713930109297211, -2846093176389647904, -606335605925899344287, 213167747093485780707937, 109460864600185764327567060, -21782399212761670190907400897
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 22 2017

Keywords

Examples

			arcsinh(x*tan(x/2)) = x^2/2! + x^4/4! - 12*x^6/6! - 193*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[ArcSinh[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] arcsinh(x*tan(x/2)).

A343795 Number of Dumont permutations of the fourth kind of length 2n avoiding the pattern 312.

Original entry on oeis.org

1, 1, 3, 10, 39, 174, 872, 4805, 28474, 178099, 1160173, 7803860, 53924841, 381640934, 2761331130, 20400560942, 153738854242, 1180631743440, 9229687049249, 73372263658451, 592476077260123, 4854377724124700, 40315729803287046, 339065862485375334, 2885324166565733641
Offset: 0

Views

Author

Alexander Burstein and Opel Jones, Apr 29 2021

Keywords

Comments

Dumont permutations of the fourth kind are permutations of even length where all deficiencies (drops) are even values at even positions.

Examples

			For n=2, a(2)=3 counts the permutations 1234, 1342, 1432.
		

References

  • O. Jones, Enumeration of Dumont permutations avoiding certain four-letter patterns, Ph.D. thesis, Howard University, 2019.

Crossrefs

Cf. A000108 (permutations avoiding 312), A024492, A048990, A110501 (length 2n Dumont permutations of 4th kind).

Programs

  • PARI
    seq(n)={my(h=sqrt(1-16*x + O(x*x^n)), F=sqrt((1-h)/(8*x)), G=(1-sqrt((1+h)/2))/(2*x), A=O(1)); forstep(k=n\3, 0, -1, my(f=Pol(F + O(x*x^k))); A = f/((1 - x*Pol(G + O(x^k)))^2 - x*f/(1 - x*Pol(G + O(x*x^k)) - x*f^2/(1 - x*A))) ); Vec(A + O(x*x^n))} \\ Andrew Howroyd, Apr 29 2021

Formula

Let F_k(x) be the truncation of the g.f. of A048990 to a polynomial of degree k. Let G_k(x) be the truncation of the g.f. of A024492 to a polynomial of degree k. Let G_{-1}(x) = 0. For k>=0, define A_k(x) recursively as follows: A_k(x) = F_k(x)/((1-x*G_{k-1}(x))^2-x*F_k(x)/(1-x*G_k(x)-x*F_k(x)^2/(1-x*A_{k+1}(x)))). Then A_0(x) is the g.f. of this sequence.

Extensions

Terms a(12) and beyond from Andrew Howroyd, Apr 29 2021

A014780 Triangle of numbers associated with Genocchi numbers.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 5, 3, 3, 17, 17, 31, 25, 31, 17, 17, 155, 155, 293, 259, 349, 259, 293, 155, 155, 2073, 2073, 3991, 3681, 5151, 4289, 5151, 3681, 3991, 2073, 2073, 38227, 38227, 74381, 70235, 100325, 88507, 109765, 88507, 100325, 70235, 74381, 38227
Offset: 1

Views

Author

Keywords

Comments

When written in the triangle form as in the example below, the k-th entry (k>=1) in row n (n>=1) is the number of Dumont permutations of the first kind of length 2*n that start with k+1. - Alexander Burstein, May 14 2022

Examples

			Triangle begins:
   1;
   1,  1,  1;
   3,  3,  5,  3,  3;
  17, 17, 31, 25, 31, 17, 17;
  ...
		

Crossrefs

Formula

Row sums give A110501.

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 22 2003

A130653 Odd terms in A002430 = numerators in Taylor series for tan(x).

Original entry on oeis.org

1, 1, 17, 929569, 129848163681107301953, 7724760729208487305545342963324697288405380586579904269441, 357302767470032900576643605538835088084055212588960920085261795996340330997333306469144562500392344758421560010463942134842407723273904635849262137252097
Offset: 1

Views

Author

Alexander Adamchuk, Jun 20 2007

Keywords

Comments

Odd terms in A002430(n) correspond to the indices that are the powers of 2.

Examples

			tan(x) = x + 2 x^3/3! + 16 x^5/5! + 272 x^7/7! + ... = 1*x + 1/3*x^3 + 2/15*x^5 + 17/315*x^7 + 62/2835*x^9 + O(x^10).
A002430(n) begins {1, 1, 2, 17, 62, 1382, 21844, 929569, 6404582, 443861162, 18888466084, 113927491862, 58870668456604, 8374643517010684, 689005380505609448, 129848163681107301953, ...}.
Thus a(1) = 1, a(2) = 1, a(3) = 17, a(4) = 929569, a(5) = 129848163681107301953.
		

Crossrefs

Cf. A002430 = Numerators in Taylor series for tan(x). Also from Taylor series for tanh(x). Cf. A001469, A002425, A046990, A089171, A110501, A036968.

Programs

  • Mathematica
    Table[ Numerator[ Abs[ 2^(2^n)(2^(2^n)-1)/(2^n)! * BernoulliB[ 2^n ] ] ], {n,1,8} ]

Formula

a(n) = Numerator[ Abs[ 2^(2^n)(2^(2^n)-1)/(2^n)! * BernoulliB[ 2^n ] ] ]. a(n) = A002430(2^(n-1)).

A221094 O.g.f.: Sum_{n>=0} n!^2 * x^n / Product_{k=1..n} (1 + k*(n-k+1)*x).

Original entry on oeis.org

1, 1, 3, 21, 263, 5165, 146335, 5649397, 285069735, 18214525629, 1437313035887, 137272113393413, 15605422414146487, 2082375903282194893, 322303158660868063359, 57271523430269553109269, 11579903781095519639058119, 2643368434346324374530280157, 676521525314300179793917303951
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2013

Keywords

Comments

Compare to: Sum_{n>=0} n!^2 * x^n / Product_{k=1..n} (1 + k^2*x) = Sum_{n>=0} A110501(n)*x^n, where A110501 is unsigned Genocchi numbers of even index.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 263*x^4 + 5165*x^5 + 146335*x^6 +...
where
A(x) = 1 + x/(1+x) + 2!^2*x^2/((1+1*2*x)*(1+2*1*x)) + 3!^2*x^3/((1+1*3*x)*(1+2*2*x)*(1+3*1*x)) + 4!^2*x^4/((1+1*4*x)*(1+2*3*x)*(1+3*2*x)*(1+4*1*x)) + 5!^2*x^5/((1+1*5*x)*(1+2*4*x)*(1+3*3*x)*(1+4*2*x)*(1+5*1*x)) +...
		

Programs

  • Mathematica
    CoefficientList[Series[Sum[(n!)^2 x^n/Product[1+k(n-k+1)x,{k,n}],{n,0,20}],{x,0,20}],x] (* Harvey P. Dale, Aug 03 2020 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, m!^2*x^m/prod(k=1, m, 1+(m-k+1)*k*x+x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))

A224873 Triangle of coefficients T(n, k) (n > 0, k < n) in expansion of sin(u*x) * sin(v*x) / (cos(u*x) + cos(v*x)), read by rows.

Original entry on oeis.org

1, 1, 1, 3, 25, 3, 17, 329, 329, 17, 155, 5325, 14301, 5325, 155, 2073, 110605, 563013, 563013, 110605, 2073, 38227, 2918825, 23904881, 45956625, 23904881, 2918825, 38227, 929569, 96075665, 1150348017, 3600524785, 3600524785, 1150348017, 96075665, 929569
Offset: 1

Views

Author

Michael Somos, Jul 23 2013

Keywords

Examples

			1; 1, 1; 3, 25, 3; 17, 329, 329, 17; ...
		

Crossrefs

Programs

  • PARI
    {T(n, k) = local(u = 'u, v = 'v, A); if( n<0 || k>=n, 0, n = 2*n; k = 2*k + 1; A = x * O(x^n); n! * polcoeff( polcoeff( polcoeff( sin( u*x + A) * sin( v*x + A) / (cos( u*x + A) + cos( v*x + A)), n, x), k, u), n - k, v))}

Formula

A024235(n) = Sum_{k = 0..n-1} T(n, k).
A110501(n) = T(n, 0).
E.g.f.: sin(u*x) * sin(v*x) / (cos(u*x) + cos(v*x)) = Sum_{n>0, k

A308750 Number of Dumont permutations of the first kind of length 2n avoiding pattern 2143 (or pattern 3421).

Original entry on oeis.org

1, 1, 2, 7, 36, 239, 1892, 17015, 168503, 1799272, 20409644
Offset: 0

Author

Alexander Burstein and Opel Jones, Jun 21 2019

Keywords

Comments

Conjecture: The number of Dumont permutations of the first kind avoiding pattern 2143 equals the number of Dumont permutations of the first kind avoiding pattern 3421 for all n >= 0.
Data for n=7,8,9,10 is due to Michael Albert.

Examples

			For n=3, the 7 Dumont permutations of the first kind avoiding pattern 2143 are 356421, 364215, 435621, 563421, 564213, 634215, 642135, and the 7 Dumont permutations of the first kind avoiding pattern 3421 are 214365, 216435, 421365, 421563, 421635, 621435, 642135.
		

References

  • O. Jones, Enumeration of Dumont permutations avoiding certain four-letter patterns, Ph.D. thesis, Howard University, 2019.

Crossrefs

A336674 Number of positive terms of the Okounkov-Olshanski formula for the number of standard tableaux of skew shape (n+3,n+2,...,1)/(n-1,n-2,...,1).

Original entry on oeis.org

1, 1, 5, 65, 1757, 87129, 7286709, 965911665, 193387756045, 56251615627273, 23021497112124901, 12903943243053179681, 9680994096074346690365, 9530338509606467082850745, 12099590059386455266220499477
Offset: 0

Author

Alejandro H. Morales, Jul 29 2020

Keywords

Comments

a(n) is also the number of semistandard Young tableaux of skew shape (n+3,n+2,...,1)/(n-1,n-2,...,1) such that the entries in row i are at most i for i=1,...,n+3.
a(n) is also the number of semistandard Young tableaux T of shape (n-1,n-2,...,1) such that j-i < T(i,j) <= n+3 for all cells (i,j).

Examples

			For n=2 the a(2)=5 semistandard Young tableaux of skew shape (5,4,3,2,1)/(1) are determined by their first column which are [1,2,3,4], [1,2,3,5], [1,2,4,5], [1,3,4,5], and [2,3,4,5]. Also, the a(2)=5 semistandard Young tableaux of shape (1) with entries between 0 and 5 are [1], [2], [3], [4], and [5]. Also, the a(3)=70-5=65 are the semistandard Young tableaux of shape (2,1) with entries at most 6 excluding the five tableaux whose entry in the first row and first column is 1: [[1,1],[2]], [[1,1],[3]], [[1,1],[4]], and [[1,1],[5]].
		

Crossrefs

A110501, A005700 gives the number of terms of the Naruse hook length formula for the same skew shape.

Programs

  • Maple
    b := proc(n)
        return 2*(-1)^n*(1-4^n)*bernoulli(2*n)/factorial(2*n);
    end proc:
    a := proc(n)
        return factorial(2*n+4)*factorial(2*n+6)*(b(n+1)*b(n+3)-b(n+2)^2)/6;
    end proc:
    seq(a(n),n=0..10);
  • Sage
    def b(n):
        return 2*(-1)^n*(1-4^n)*bernoulli(2*n)/factorial(2*n) ;
    def a(n):
        return factorial(2*n+4)*factorial(2*n+6)*(b(n+1)*b(n+3)-b(n+2)^2)/6;
    [a(i) for i in range(10)]

Formula

a(n) = ((2*n+4)!*(2*n+6)!/3!)*(b(n+1)*b(n+3)-b(n+2)^2) where b(n)=A110501(n)/(2*n)!.
Previous Showing 41-50 of 51 results. Next