1, 1, 1, 3, 25, 3, 17, 329, 329, 17, 155, 5325, 14301, 5325, 155, 2073, 110605, 563013, 563013, 110605, 2073, 38227, 2918825, 23904881, 45956625, 23904881, 2918825, 38227, 929569, 96075665, 1150348017, 3600524785, 3600524785, 1150348017, 96075665, 929569
Offset: 1
1; 1, 1; 3, 25, 3; 17, 329, 329, 17; ...
A308750
Number of Dumont permutations of the first kind of length 2n avoiding pattern 2143 (or pattern 3421).
Original entry on oeis.org
1, 1, 2, 7, 36, 239, 1892, 17015, 168503, 1799272, 20409644
Offset: 0
For n=3, the 7 Dumont permutations of the first kind avoiding pattern 2143 are 356421, 364215, 435621, 563421, 564213, 634215, 642135, and the 7 Dumont permutations of the first kind avoiding pattern 3421 are 214365, 216435, 421365, 421563, 421635, 621435, 642135.
- O. Jones, Enumeration of Dumont permutations avoiding certain four-letter patterns, Ph.D. thesis, Howard University, 2019.
A336674
Number of positive terms of the Okounkov-Olshanski formula for the number of standard tableaux of skew shape (n+3,n+2,...,1)/(n-1,n-2,...,1).
Original entry on oeis.org
1, 1, 5, 65, 1757, 87129, 7286709, 965911665, 193387756045, 56251615627273, 23021497112124901, 12903943243053179681, 9680994096074346690365, 9530338509606467082850745, 12099590059386455266220499477
Offset: 0
For n=2 the a(2)=5 semistandard Young tableaux of skew shape (5,4,3,2,1)/(1) are determined by their first column which are [1,2,3,4], [1,2,3,5], [1,2,4,5], [1,3,4,5], and [2,3,4,5]. Also, the a(2)=5 semistandard Young tableaux of shape (1) with entries between 0 and 5 are [1], [2], [3], [4], and [5]. Also, the a(3)=70-5=65 are the semistandard Young tableaux of shape (2,1) with entries at most 6 excluding the five tableaux whose entry in the first row and first column is 1: [[1,1],[2]], [[1,1],[3]], [[1,1],[4]], and [[1,1],[5]].
A110501,
A005700 gives the number of terms of the Naruse hook length formula for the same skew shape.
-
b := proc(n)
return 2*(-1)^n*(1-4^n)*bernoulli(2*n)/factorial(2*n);
end proc:
a := proc(n)
return factorial(2*n+4)*factorial(2*n+6)*(b(n+1)*b(n+3)-b(n+2)^2)/6;
end proc:
seq(a(n),n=0..10);
-
def b(n):
return 2*(-1)^n*(1-4^n)*bernoulli(2*n)/factorial(2*n) ;
def a(n):
return factorial(2*n+4)*factorial(2*n+6)*(b(n+1)*b(n+3)-b(n+2)^2)/6;
[a(i) for i in range(10)]
Comments