cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A123852 Decimal expansion of (1*(2*(3*...)^(1/3))^(1/3))^(1/3).

Original entry on oeis.org

1, 1, 5, 6, 3, 6, 2, 6, 8, 4, 3, 3, 2, 2, 6, 9, 7, 1, 6, 8, 5, 3, 3, 7, 0, 3, 2, 2, 8, 8, 7, 3, 6, 9, 3, 5, 6, 5, 1, 3, 0, 1, 4, 5, 4, 3, 8, 9, 1, 8, 8, 8, 6, 3, 7, 9, 9, 9, 2, 5, 9, 5, 9, 8, 9, 8, 3, 1, 7, 7, 8, 1, 6, 0, 7, 2, 8, 2, 6, 1, 9, 4, 6, 0, 7, 9, 0, 8, 1, 3, 3, 8, 2, 0, 3, 7, 8, 3, 1, 7
Offset: 1

Views

Author

Keywords

Comments

Cubic recurrence constant (see A123851): a cubic analog of Somos's quadratic recurrence constant A112302.

Examples

			1.156362684332269716853370322887369356513014543891888637999259598983177816...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.

Crossrefs

Programs

  • Mathematica
    Take[RealDigits[Product[N[n^3^-n,200], {n,400}]][[1]], 100]
    RealDigits[Exp[-D[PolyLog[n, 1/3], n]/.n->0], 10, 100][[1]] (* Jean-François Alcover, Jan 28 2014 *)
  • PARI
    prodinf(n=1, n^(1/3^n)) \\ Michel Marcus, Aug 03 2019

Formula

Equals Product_{n>=1} n^(1/3^n).

Extensions

References updated by R. J. Mathar, Aug 12 2010

A274760 The multinomial transform of A001818(n) = ((2*n-1)!!)^2.

Original entry on oeis.org

1, 1, 10, 478, 68248, 21809656, 13107532816, 13244650672240, 20818058883902848, 48069880140604832128, 156044927762422185270016, 687740710497308621254625536, 4000181720339888446834235653120, 29991260979682976913756629498334208
Offset: 0

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The multinomial transform [MNL] transforms an input sequence b(n) into the output sequence a(n). Given the fact that the structure of the a(n) formulas, see the examples, lead to the multinomial coefficients A036039 the MNL transform seems to be an appropriate name for this transform. The multinomial transform is related to the exponential transform, see A274804 and the third formula. For the inverse multinomial transform [IML] see A274844.
To preserve the identity IML[MNL[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the MNL, otherwise information about b(0) will be lost in transformation.
In the a(n) formulas, see the examples, the multinomial coefficients A036039 appear.
We observe that a(0) = 1 and that this term provides no information about any value of b(n), this notwithstanding we will start the a(n) sequence with a(0) = 1.
The Maple programs can be used to generate the multinomial transform of a sequence. The first program uses the first formula which was found by Paul D. Hanna, see A158876, and Vladimir Kruchinin, see A215915. The second program uses properties of the e.g.f., see the sequences A158876, A213507, A244430 and A274539 and the third formula. The third program uses information about the inverse multinomial transform, see A274844.
Some MNL transform pairs are, n >= 1: A000045(n) and A244430(n-1); A000045(n+1) and A213527(n-1); A000108(n) and A213507(n-1); A000108(n-1) and A243953(n-1); A000142(n) and A158876(n-1); A000203(n) and A053529(n-1); A000110(n) and A274539(n-1); A000041(n) and A215915(n-1); A000035(n-1) and A177145(n-1); A179184(n) and A038205(n-1); A267936(n) and A000266(n-1); A267871(n) and A000090(n-1); A193356(n) and A088009(n-1).

Examples

			Some a(n) formulas, see A036039:
  a(0) = 1
  a(1) = 1*x(1)
  a(2) = 1*x(2) + 1*x(1)^2
  a(3) = 2*x(3) + 3*x(1)*x(2) + 1*x(1)^3
  a(4) = 6*x(4) + 8*x(1)*x(3) + 3*x(2)^2 + 6*x(1)^2*x(2) + 1*x(1)^4
  a(5) = 24*x(5) + 30*x(1)*x(4) + 20*x(2)*x(3) + 20*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 10*x(1)^3*x(2) + 1*x(1)^5
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:= 13: b := proc(n): (doublefactorial(2*n-1))^2 end: a:= proc(n) option remember: if n=0 then 1 else add(((n-1)!/(n-k)!) * b(k) * a(n-k), k=1..n) fi: end: seq(a(n), n = 0..nmax); # End first MNL program.
    nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: t1 := exp(add(b(n)*x^n/n, n = 1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n = 0..nmax); # End second MNL program.
    nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: f := series(log(1+add(s(n)*x^n/n!, n=1..nmax)), x, nmax+1): d := proc(n): n*coeff(f, x, n) end: a(0) := 1: a(1) := b(1): s(1) := b(1): for n from 2 to nmax do s(n) := solve(d(n)-b(n), s(n)): a(n):=s(n): od: seq(a(n), n=0..nmax); # End third MNL program.
  • Mathematica
    b[n_] := (2*n - 1)!!^2;
    a[0] = 1; a[n_] := a[n] = Sum[((n-1)!/(n-k)!)*b[k]*a[n-k], {k, 1, n}];
    Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Nov 17 2017 *)

Formula

a(n) = Sum_{k=1..n} ((n-1)!/(n-k)!)*b(k)*a(n-k), n >= 1 and a(0) = 1, with b(n) = A001818(n) = ((2*n-1)!!)^2.
a(n) = n!*P(n), with P(n) = (1/n)*(Sum_{k=0..n-1} b(n-k)*P(k)), n >= 1 and P(0) = 1, with b(n) = A001818(n) = ((2*n-1)!!)^2.
E.g.f.: exp(Sum_{n >= 1} b(n)*x^n/n) with b(n) = A001818(n) = ((2*n-1)!!)^2.
denom(a(n)/2^n) = A001316(n); numer(a(n)/2^n) = [1, 1, 5, 239, 8531, 2726207, ...].

A123853 Numerators in an asymptotic expansion for the cubic recurrence sequence A123851.

Original entry on oeis.org

1, 3, -15, 113, -5397, 84813, -3267755, 74391561, -15633072909, 465681118929, -31041303829713, 1145088996404679, -185348722911971841, 8165727090278785521, -778296382754673737187, 39898888480559205453945, -35033447016186321707305533
Offset: 0

Views

Author

Keywords

Comments

A cubic analog of the asymptotic expansion A116603 of Somos's quadratic recurrence sequence A052129. Denominators are A123854.

Examples

			A123851(n) ~ c^(3^n)*n^(-1/2)/(1 + 3/(4*n) - 15/(32*n^2) + 113/(128*n^3) - 5397/(2048*n^4) + ...) where c = 1.1563626843322... is the cubic recurrence constant A123852.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.

Crossrefs

Cf. A052129, A112302, A116603, A123851, A123852, A123854 (denominators).

Programs

  • Maple
    f:=proc(t,x) exp(sum(ln(1+m*x)/t^m,m=1..infinity)); end; for j from 0 to 29 do numer(coeff(series(f(3,x),x=0,30),x,j)); od;
  • PARI
    {a(n) = local(A); if(n < 0, 0, A = 1 + O(x) ; for( k = 1, n, A = truncate(A) + x * O(x^k); A += x^k * polcoeff( 3/4 * (subst(1/A, x, x^2/(1-x^2))^2/(1-x^2) - 1/subst(A, x, x^2)^(2/3)), 2*k ) ); numerator( polcoeff( A, n ) ) ) } /* Michael Somos, Aug 23 2007 */

A274181 Decimal expansion of Phi(1/2, 2, 2), where Phi is the Lerch transcendent.

Original entry on oeis.org

3, 2, 8, 9, 6, 2, 1, 0, 5, 8, 6, 0, 0, 5, 0, 0, 2, 3, 6, 1, 0, 6, 2, 5, 2, 8, 0, 6, 3, 8, 7, 2, 0, 4, 3, 4, 9, 7, 6, 7, 9, 3, 8, 9, 9, 2, 2, 4, 5, 0, 5, 7, 0, 1, 7, 3, 7, 3, 8, 8, 1, 9, 1, 4, 9, 2, 6, 8, 4, 1, 7, 6, 2, 8, 6, 7, 3, 2, 8, 0, 3, 2, 6, 7, 3, 6, 1, 2, 7, 4, 3, 5, 1, 6, 6, 3, 4, 2, 8, 7, 4
Offset: 0

Views

Author

Johannes W. Meijer and N. H. G. Baken, Jun 17 2016, Jul 08 2016

Keywords

Comments

The exponential integral distribution is defined by p(x, m, n, mu) = ((n+mu-1)^m * x^(mu-1) / (mu-1)!) * E(x, m, n), see A163931 and the Meijer link. The moment generating function of this probability distribution function is M(a, m, n, mu) = Sum_{k>=0}(((mu+k-1)!/((mu-1)!*k!)) * ((n+mu-1) / (n+mu+k-1))^m * a^k).
In the special case that mu=1 we get p(x, m, n, mu=1) = n^m * E(x, m, n) and M(a, m, n, mu=1) = n^m * Phi(a, m, n), with Phi the Lerch transcendent. If n=1 and mu=1 we get M(a, m, n=1, mu=1) = polylog(m, a)/a = Li_m(a)/a.

Examples

			0.32896210586005002361062528063872043497679389922...
		

References

  • William Feller, An introduction to probability theory and its applications, Vol. 1. p. 285, 1968.

Crossrefs

Cf. A163931, A002162 (Phi(1/2, 1, 1)/2), A076788 (Phi(1/2, 2, 1)/2), A112302, A008276.

Programs

  • Maple
    Digits := 101; c := evalf(LerchPhi(1/2, 2, 2));
  • Mathematica
    N[HurwitzLerchPhi[1/2, 2, 2], 25] (* G. C. Greubel, Jun 19 2016 *)
  • PARI
    Pi^2/3 - 2*log(2)^2 - 2 \\ Altug Alkan, Jul 08 2016
    
  • PARI
    lerchphi(.5,2,2) \\ Charles R Greathouse IV, Jan 30 2025
    
  • Python
    from mpmath import mp, lerchphi
    mp.dps=102
    print([int(d) for d in list(str(lerchphi(1/2, 2, 2))[2:-1])]) # Indranil Ghosh, Jul 04 2017

Formula

Equals Phi(1/2, 2, 2) with Phi the Lerch transcendent.
Equals Sum_{k>=0}(1/((2+k)^2*2^k)).
Equals 4 * polylog(2, 1/2) - 2.
Equals Pi^2/3 - 2*log(2)^2 - 2.
Equals Integral_{x=0..oo} x*exp(-x)/(exp(x)-1/2) dx. - Amiram Eldar, Aug 24 2020

A296301 Decimal expansion of Product_{k>=2} k^(1/k!).

Original entry on oeis.org

1, 8, 2, 9, 0, 2, 4, 6, 7, 9, 5, 6, 3, 5, 7, 1, 8, 6, 4, 3, 8, 9, 5, 7, 2, 3, 5, 7, 3, 6, 4, 8, 8, 5, 8, 4, 9, 1, 0, 0, 7, 6, 7, 6, 3, 3, 3, 7, 2, 1, 1, 4, 1, 1, 6, 7, 3, 0, 6, 4, 4, 1, 2, 4, 6, 1, 9, 7, 0, 1, 8, 2, 5, 3, 1, 0, 1, 2, 8, 6, 0, 3, 4, 9, 7, 4, 9, 7, 2, 5, 5, 9, 4, 6, 8, 0, 7, 4, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 09 2017

Keywords

Examples

			1.8290246795635718643895723573648858491007676333721141167306441...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[Sum[ Log[k]/k!, {k, 2, 700}]], 10, 100][[1]] (* G. C. Greubel, Jul 28 2018 *)
  • PARI
    exp(suminf(k=2, log(k)/k!)) \\ Michel Marcus, Dec 11 2017

Formula

Equals (2*(3*(4*(5*(6*(7*...)^(1/7))^(1/6))^(1/5))^(1/4))^(1/3))^(1/2).
Equals exp(Sum_{k>=2} log(k)/k!).
Equals lim_{k->infinity} b(k)^(1/k!), where b(k) = k*b(k-1)^k with b(0) = 1.
Equals Product_{p prime} p^(Sum_{k>=2} (p-adic valuation of k)/k!).

A188834 Decimal expansion of limit sqrt(2*sqrt(4*sqrt(6*sqrt(8*sqrt(10*...sqrt(2*n...)))))).

Original entry on oeis.org

3, 3, 2, 3, 3, 7, 5, 8, 9, 9, 2, 6, 7, 1, 8, 8, 2, 4, 2, 5, 9, 1, 6, 3, 7, 8, 4, 5, 4, 9, 9, 9, 0, 1, 4, 9, 9, 9, 2, 8, 8, 3, 7, 2, 7, 0, 0, 5, 0, 1, 3, 6, 4, 1, 6, 3, 7, 9, 4, 2, 2, 3, 3, 6, 0, 5, 1, 2, 1, 8, 0, 5, 9, 6, 5, 2, 7, 6, 7, 4, 5, 5, 8, 1, 6, 7, 3, 8, 3, 5, 2, 8, 2, 2, 9, 2, 2, 3, 3, 4, 3
Offset: 1

Views

Author

Paolo P. Lava, Apr 12 2011

Keywords

Examples

			3.3233758992671882...
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(i)
    local a,n;
    a:=1;
    for n from i by -1 to 1 do a:=2*n*sqrt(a); od;
    print(evalf(sqrt(a),1000));
    end:
    P(5000);
  • Mathematica
    digits = 101; p[m_] := p[m] = Fold[N[Sqrt[#2*#1], digits] &, 1, Range[2*m, 2, -2]] // RealDigits[#, 10, digits]& // First; p[digits]; p[m = 2*digits]; While[p[m] != p[m/2], m = 2*m]; p[m] (* Jean-François Alcover, Feb 24 2014 *)

A188835 Decimal expansion of limit sqrt(1*sqrt(3*sqrt(5*sqrt(7*sqrt(9*...sqrt((2*n-1)...)))))).

Original entry on oeis.org

2, 1, 0, 7, 8, 4, 0, 9, 0, 2, 6, 3, 7, 8, 5, 4, 9, 3, 8, 0, 1, 5, 7, 4, 1, 1, 8, 3, 9, 3, 5, 2, 4, 7, 0, 2, 9, 7, 1, 6, 9, 5, 8, 3, 5, 7, 4, 6, 5, 9, 3, 4, 5, 8, 2, 8, 0, 9, 4, 7, 0, 5, 3, 6, 0, 3, 2, 6, 8, 1, 3, 7, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 5, 6, 8, 5, 9, 0, 4, 5, 5, 4, 7, 6, 9, 9, 4, 2, 4, 1
Offset: 1

Views

Author

Paolo P. Lava, Apr 12 2011

Keywords

Comments

A generalization of Somos quadratic recurrence constant A112302.

Examples

			2.10784090263785493...
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(i)
    local a,n;
    a:=1;
    for n from i by -1 to 1 do a:=(2*n-1)*sqrt(a); od;
    print(evalf(sqrt(a),1000));
    end:
    P(5000);
  • Mathematica
    digits = 100; Clear[p]; p[m_] := p[m] = Fold[N[Sqrt[#2*#1], digits] &, 1, Range[2*m + 1, 1, -2]] // RealDigits[#, 10, digits] & // First; p[digits]; p[m = 2*digits]; While[p[m] != p[m/2], m = 2*m]; p[m] (* Jean-François Alcover, Feb 24 2014 *)

Formula

Product_{n>0} ((2*n + 1) / (2*n - 1)) ^ (2^-n). - Michael Somos, Feb 24 2014

A259235 Decimal expansion of sqrt(2*sqrt(3*sqrt(4*...))), a variant of Somos's quadratic recurrence constant.

Original entry on oeis.org

2, 7, 6, 1, 2, 0, 6, 8, 4, 1, 9, 5, 7, 4, 9, 8, 0, 3, 3, 2, 3, 0, 4, 5, 4, 6, 4, 6, 5, 8, 0, 1, 3, 1, 1, 0, 4, 8, 7, 6, 1, 2, 5, 9, 8, 0, 7, 1, 5, 3, 0, 4, 8, 5, 0, 9, 5, 0, 7, 4, 5, 9, 6, 1, 3, 7, 5, 5, 9, 5, 5, 9, 1, 9, 4, 3, 9, 2, 7, 1, 5, 8, 3, 4, 8, 0, 1, 7, 2, 6, 6, 3, 0, 8, 9, 8, 9, 4, 4, 3, 4, 1
Offset: 1

Views

Author

Jean-François Alcover, Jun 22 2015

Keywords

Examples

			2.7612068419574980332304546465801311048761259807153...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Exp(2*(&+[(1/2)^n*Log(n): n in [2..2000]])); // G. C. Greubel, Sep 30 2018
  • Mathematica
    RealDigits[Exp[-2*Derivative[1, 0][PolyLog][0, 1/2]], 10, 102] // First
    RealDigits[Exp[2*Sum[(1/2)^n*Log[n], {n, 2, 2000}]], 10, 100][[1]] (* G. C. Greubel, Sep 30 2018 *)
  • PARI
    exp(sumpos(n=1,log(n+1)/2^n)) \\ Charles R Greathouse IV, Apr 18 2016
    

Formula

Equals A112302^2.
Equals exp( Sum_{n>=1} log(n)/2^(n-1) ).
Also equals exp(-2*PolyLog'(0,1/2)), where PolyLog' is the derivative of PolyLog(n,x) w.r.t. n.

A268107 Decimal expansion of 'lambda', a Somos quadratic recurrence constant mentioned by Steven Finch.

Original entry on oeis.org

3, 9, 9, 5, 2, 4, 6, 6, 7, 0, 9, 6, 7, 9, 9, 4, 6, 5, 5, 2, 5, 0, 3, 3, 4, 7, 4, 3, 3, 2, 2, 5, 8, 3, 3, 2, 2, 1, 7, 3, 6, 9, 8, 5, 4, 6, 7, 5, 9, 9, 6, 8, 9, 7, 7, 3, 6, 7, 0, 0, 5, 2, 8, 9, 4, 8, 5, 3, 0, 7, 3, 7, 0, 2, 7, 1, 2, 5, 9, 3, 4, 5, 6, 6, 3, 4, 9, 2, 0, 9, 8, 2, 0, 2, 5, 7, 5, 7, 4, 3, 3, 3, 1, 0, 0, 1, 6, 6, 7, 5, 1, 6, 4, 6, 9, 6, 4, 7, 4, 5, 6, 4, 4, 9, 8, 4, 5
Offset: 0

Views

Author

Jean-François Alcover, Jan 26 2016

Keywords

Comments

[Quoted from Steven Finch] Another Somos constant lambda = 0.3995246670... arises as follows: If k < lambda, then the sequence h_0 = 0, h_1 = k, h_n = h_(n-1)*(1 + h_(n-1) - h_(n-2)) for n>=2 converges to a limit less than 1; if k > lambda, then the sequence diverges to infinity. This is similar to Grossman's constant.
A heuristical evaluation of lambda = 0.39952466709679946552503347433225833221736985467599... was communicated to me by Jon E. Schoenfield in a private email.

Examples

			0.39952466709679946552503347433225833221736985467599689773670052894853...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.10 Quadratic Recurrence Constants, p. 446.

Crossrefs

Programs

  • Magma
    // See the link to Jon E. Schoenfield's program.
  • Mathematica
    n0 (* initial number of terms *) = 2*10^7; iter = 10^5; dn = 10^6; k1 = 0.3; k2 = 0.4; eps = 10^-16; f[k_?NumericQ] := (h0 = 0; h1 = k; h2 = k*(1+k); Do[h0 = h1; h1 = h2; h2 = Min[h1 + (h1-h0), h1*(1+h1-h0)], {iter}]; h2); Clear[g]; g[n0] = k1; g[n = n0+dn] = k2; g[n_] := g[n] = k /. FindRoot[f[k]==1, {k, g[n-dn] }]; While[Print[n, " ", g[n] // RealDigits]; Abs[g[n] - g[n-dn]] > eps, n = n+dn]; lambda = g[n]; RealDigits[lambda][[1]][[1;;9]]

Formula

Conjecture: lambda is the radius of convergence of the function Sum_{n>=0} A045761(n)*x^n, that is the constant 1/d computed by Vaclav Kotesovec in A045761.

Extensions

Extended to 127 digits using Jon E. Schoenfield's evaluation, Aug 27 2016

A380373 Decimal expansion of Sum_{i>=1} 1/2^A082851(i).

Original entry on oeis.org

8, 6, 4, 1, 9, 1, 3, 2, 1, 4, 9, 5, 0, 4, 5, 8, 6, 2, 8, 7, 8, 4, 6, 5, 4, 8, 0, 5, 8, 7, 7, 0, 4, 8, 0, 2, 0, 2, 3, 8, 5, 1, 8, 9, 1, 9, 2, 8, 6, 1, 4, 3, 2, 0, 5, 0, 6, 7, 0, 2, 4, 2, 4, 3, 6, 4, 3, 9, 1, 7, 8, 8, 7, 0, 8, 5, 9, 3, 2, 7, 2, 0, 2, 5, 8, 0, 9, 0, 9, 6, 3, 9, 2, 7, 6, 2, 1, 0, 2, 3, 2, 0, 9, 0, 8, 3, 1, 5
Offset: 0

Views

Author

Jwalin Bhatt, Jan 23 2025

Keywords

Comments

This number has the property that the geometric mean of the differences (A082850) in the positions of 1s (A082851) of its binary representation (A380372) approaches the Somos constant (A112302).

Examples

			0.8641913214950458_10 -> 0.1101110100111011101_2 (A380372)
Positions of 1s -> 1,2,4,5,6,8,11,12,13,15,... (A082851)
Difference in positions of 1s -> 1,1,2,1,1,2,3,1,1,2,1,1,2,3,4,... (A082850)
Geomtric Mean -> 1.66168794963359... (A112302)
		

Crossrefs

Cf. A082850, A082851, A380372 (binary expansion).

Programs

  • Python
    from itertools import count, islice
    from fractions import Fraction
    import os
    def A380372_gen():
        S = []
        for n in count(1):
            yield from (m:=S+[0]*(n-1)+[1])
            S += m
    def bin_to_frac_interval(binary_repr):
        lower_bound, last_bit_id = 0, 0
        for i, bit in enumerate(binary_repr, start=1):
            if bit:
                lower_bound += Fraction(1, 2**i)
                last_bit_id = i
        upper_bound = lower_bound + Fraction(1, 2**last_bit_id)
        return lower_bound, upper_bound
    n_binary_terms = 400
    diff_bin = islice(A380372_gen(), n_binary_terms)
    lower, upper = bin_to_frac_interval(diff_bin)
    lower, upper = str(int(lower*10**(n_binary_terms//3))), str(int(upper*10**(n_binary_terms//3)))
    A380373 = os.path.commonprefix([lower, upper])

Formula

Equals Sum_{i>=1} 1/2^A082851(i).
Equals Sum_{i>=1} A380372(i)/2^i.
Previous Showing 11-20 of 21 results. Next