A166153
a(n) = (7^n+14*(-8)^n)/15.
Original entry on oeis.org
1, -7, 63, -455, 3983, -29463, 252511, -1902439, 16043055, -122579639, 1020990719, -7885450503, 65060930767, -506646158935, 4150058281887, -32522243182247, 264925506967919, -2086171125173751, 16921999515377215
Offset: 0
-
LinearRecurrence[{-1, 56}, {1, -7}, 50] (* G. C. Greubel, May 01 2016 *)
A220074
Triangle read by rows giving coefficients T(n,k) of [x^(n-k)] in Sum_{i=0..n} (x-1)^i, 0 <= n <= k.
Original entry on oeis.org
1, 1, 0, 1, -1, 1, 1, -2, 2, 0, 1, -3, 4, -2, 1, 1, -4, 7, -6, 3, 0, 1, -5, 11, -13, 9, -3, 1, 1, -6, 16, -24, 22, -12, 4, 0, 1, -7, 22, -40, 46, -34, 16, -4, 1, 1, -8, 29, -62, 86, -80, 50, -20, 5, 0, 1, -9, 37, -91, 148, -166, 130, -70, 25, -5, 1
Offset: 0
Triangle begins:
1;
1, 0;
1, -1, 1;
1, -2, 2, 0;
1, -3, 4, -2, 1;
1, -4, 7, -6, 3, 0;
1, -5, 11, -13, 9, -3, 1;
1, -6, 16, -24, 22, -12, 4, 0;
1, -7, 22, -40, 46, -34, 16, -4, 1;
1, -8, 29, -62, 86, -80, 50, -20, 5, 0;
1, -9, 37, -91, 148, -166, 130, -70, 25, -5, 1;
1, -10, 46, -128, 239, -314, 296, -200, 95, -30, 6, 0;
...
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Dmitry Efimov, Hafnian of two-parameter matrices, arXiv:2101.09722 [math.CO], 2021.
- Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
- Ângela Mestre, José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- OEIS Wiki, Autosequence
-
Flat(List([0..12], n-> List([0..n], k-> Sum([0..k], j-> (-1)^j*Binomial(n-k+j, j))))); # G. C. Greubel, Feb 18 2019
-
[[(&+[(-1)^j*Binomial(n-k+j, j): j in [0..k]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 18 2019
-
A059259A := proc(n,k)
1/(1+y)/(1-x-y) ;
coeftayl(%,x=0,n) ;
coeftayl(%,y=0,k) ;
end proc:
A059259 := proc(n,k)
A059259A(n-k,k) ;
end proc:
A220074 := proc(i,j)
(-1)^j*A059259(i,j) ;
end proc: # R. J. Mathar, May 14 2014
-
Table[Sum[(-1)^i*Binomial[n-k+i,i], {i, 0, k}], {n, 0, 12}, {k, 0, n} ]//Flatten (* Michael De Vlieger, Jan 27 2016 *)
-
{T(n,k) = sum(j=0,k, (-1)^j*binomial(n-k+j,j))};
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 18 2019
-
[[sum((-1)^j*binomial(n-k+j,j) for j in (0..k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 18 2019
Definition and comments clarified by
Li-yao Xia, May 15 2014
A114700
Triangle T, read by rows, such that the m-th matrix power satisfies T^m = I + m*(T - I), where T(n,k) = [T^-1](n-1,k) + [T^-1](n-1,k-1) for n>k>0, with T(n,0)=T(n,n)=1 for n>=0 and I is the identity matrix.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, -1, 1, 1, 1, 0, 0, 0, 1, 1, -1, 0, 0, 1, 1, 1, 0, 1, 0, -1, 0, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 0, 2, 2, 0, -2, -2, 0, 1, 1, -1, -2, -4, -2, 2, 4, 2, 1, 1, 1, 0, 3, 6, 6, 0, -6, -6, -3, 0, 1, 1, -1, -3, -9, -12, -6, 6, 12, 9, 3, 1, 1, 1, 0, 4, 12, 21, 18, 0, -18, -21, -12, -4, 0, 1
Offset: 0
Matrix inverse is: T^-1 = 2*I - T.
Matrix log is: log(T) = T - I.
Triangle T begins:
1;
1, 1;
1, 0, 1;
1,-1, 1, 1;
1, 0, 0, 0, 1;
1,-1, 0, 0, 1, 1;
1, 0, 1, 0,-1, 0, 1;
1,-1,-1,-1, 1, 1, 1, 1;
1, 0, 2, 2, 0,-2,-2, 0, 1;
1,-1,-2,-4,-2, 2, 4, 2, 1, 1;
1, 0, 3, 6, 6, 0,-6,-6,-3, 0, 1;
1,-1,-3,-9,-12,-6, 6, 12, 9, 3, 1, 1;
1, 0, 4, 12, 21, 18, 0,-18,-21,-12,-4, 0, 1; ...
The g.f. of column k, C_k(x), obeys the recurrence:
C_k = C_{k-1} + (-1)^k*x*(1+2*x)/(1-x)/(1+x)^k with C_0 = 1/(1-x);
so that column g.f.s continue as:
C_1 = C_0 - x*(1+2*x)/(1-x)/(1+x),
C_2 = C_1 + x*(1+2*x)/(1-x)/(1+x)^2,
C_3 = C_2 - x*(1+2*x)/(1-x)/(1+x)^3, ...
-
T(n,k)=local(x=X+X*O(X^n),y=Y+Y*O(Y^k));polcoeff(polcoeff( 1/(1-x*y)+ x*(1+x-2*x^2*y)/(1-x)/(1+x+x*y)/(1-x*y),n,X),k,Y)
-
T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1,for(c=1,r, M[r,c]=if(r==c,1,if(c==1,1,if(c>1, (2*M^0-M)[r-1,c-1])+(2*M^0-M)[r-1,c]))));return(M[n+1,k+1])
A116466
Unsigned row sums of triangle A114700.
Original entry on oeis.org
1, 2, 2, 4, 2, 4, 4, 8, 10, 20, 32, 64, 112, 224, 408, 816, 1514, 3028, 5680, 11360, 21472, 42944, 81644, 163288, 311896, 623792, 1196132, 2392264, 4602236, 9204472, 17757184, 35514368, 68680170, 137360340, 266200112, 532400224, 1033703056
Offset: 0
-
CoefficientList[Series[(1 + 2*x)*(2*(1 + x^2)/(1 - x^2) + x^2/(1 - 4*x^2)^(1/2))/(2 + x^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Feb 21 2017 *)
-
a(n)=local(x=X+X*O(X^n)); polcoeff((1+2*x)*(2*(1+x^2)/(1-x^2)+x^2/(1-4*x^2)^(1/2))/(2+x^2),n,X)
-
/* a(n) as the unsigned row sums of A114700 */ a(n)=sum(k=0,n,abs(polcoeff(polcoeff(1/(1-x*y)+ x*(1+x-2*x^2*y)/(1-x)/(1+x+x*y+x*O(x^n)+y*O(y^k))/(1-x*y),n,x),k,y)))
A165458
a(0)=1, a(1)=4, a(n) = 12*a(n-2) - a(n-1).
Original entry on oeis.org
1, 4, 8, 40, 56, 424, 248, 4840, -1864, 59944, -82312, 801640, -1789384, 11409064, -32881672, 169790440, -564370504, 2601855784, -9374301832, 40596571240, -153088193224, 640247048104, -2477305366792, 10160269944040, -39887934345544, 161811173674024
Offset: 0
-
a:=[1,4];; for n in [3..27] do a[n]:=12*a[n-2]-a[n-1]; od; a; # Muniru A Asiru, Oct 21 2018
-
[(8*3^n-(-4)^n)/7: n in [0..40]]; // G. C. Greubel, Oct 20 2018
-
A165458:=n->(8*3^n-(-4)^n)/7: seq(A165458(n), n=0..40); # Wesley Ivan Hurt, May 26 2015
-
LinearRecurrence[{-1,12},{1,4},30] (* Harvey P. Dale, Dec 26 2015 *)
-
vector(40, n, n--; (8*3^n-(-4)^n)/7) \\ G. C. Greubel, Oct 20 2018
-
for n in range(0, 30): print(int((8*3**n-(-4)**n)/7), end=', ') # Stefano Spezia, Oct 21 2018
A165470
a(0)=1, a(1)=5, a(n) = 20*a(n-2) - a(n-1).
Original entry on oeis.org
1, 5, 15, 85, 215, 1485, 2815, 26885, 29415, 508285, 80015, 10085685, -8485385, 210199085, -379906785, 4583888485, -12182024185, 103859793885, -347500277585, 2424696155285, -9374701706985, 57868624812685, -245362658952385, 1402735155206085, -6309988334253785
Offset: 0
-
a:=[1,5];; for n in [3..25] do a[n]:=20*a[n-2]-a[n-1]; od; a; # Muniru A Asiru, Oct 21 2018
-
[(10*4^n-(-5)^n)/9: n in [0..40]]; // G. C. Greubel, Oct 20 2018
-
seq(coeff(series((1+6*x)/(1+x-20*x^2),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 21 2018
-
LinearRecurrence[{-1,20}, {1,5}, 40] (* G. C. Greubel, Oct 20 2018 *)
-
vector(40, n, n--; (10*4^n-(-5)^n)/9) \\ G. C. Greubel, Oct 20 2018
-
for n in range(0, 30): print(int((10*4**n-(-5)**n)/9), end=', ') # Stefano Spezia, Oct 21 2018
A165491
a(0)=1, a(1)=6, a(n) = 30*a(n-2) - a(n-1).
Original entry on oeis.org
1, 6, 24, 156, 564, 4116, 12804, 110676, 273444, 3046836, 5156484, 86248596, 68445924, 2519011956, -465634236, 76035992916, -90005019996, 2371084807476, -5071235407356, 76203779631636, -228340841852316, 2514454230801396
Offset: 0
-
a:=[1,6];; for n in [3..22] do a[n]:=30*a[n-2]-a[n-1]; od; a; # Muniru A Asiru, Oct 21 2018
-
[(12*5^n-(-6)^n)/11: n in [0..30]]; // G. C. Greubel, Oct 20 2018
-
seq(coeff(series((1+7*x)/(1+x-30*x^2),x,n+1), x, n), n = 0 .. 22); # Muniru A Asiru, Oct 21 2018
-
LinearRecurrence[{-1,30},{1,6},30] (* Harvey P. Dale, May 04 2012 *)
-
vector(30, n, n--; (12*5^n-(-6)^n)/11) \\ G. C. Greubel, Oct 20 2018
A165505
a(0)=1, a(1)=7, a(n) = 42*a(n-2) - a(n-1).
Original entry on oeis.org
1, 7, 35, 259, 1211, 9667, 41195, 364819, 1365371, 13957027, 43388555, 542806579, 1279512731, 21518363587, 32221171115, 871550099539, 481739087291, 36123365093347, -15890323427125, 1533071657347699, -2200465241286949
Offset: 0
-
[(14*6^n-(-7)^n)/13: n in [0..40]]; // G. C. Greubel, Oct 20 2018
-
A165505:=n->(14*6^n-(-7)^n)/13: seq(A165505(n), n=0..30); # Wesley Ivan Hurt, Apr 14 2017
-
LinearRecurrence[{-1, 42}, {1, 7}, 40] (* G. C. Greubel, Oct 20 2018 *)
-
vector(40, n, n--; (14*6^n-(-7)^n)/13) \\ G. C. Greubel, Oct 20 2018
A165506
a(0) = 1, a(1) = 8, a(n) = 56*a(n-2) - a(n-1).
Original entry on oeis.org
1, 8, 48, 400, 2288, 20112, 108016, 1018256, 5030640, 51991696, 229724144, 2681810832, 10182741232, 139998665360, 430234843632, 7409690416528, 16683460826864, 398259202498704, 536014603805680, 21766500736121744
Offset: 0
a(20)=8250317076996336, a(21)=1210673724145821328, a(22)=-748655967834026512, a(23)=68546384520000020880, a(24)=-110471118718705505552,...
-
[(16*7^n-(-8)^n)/15: n in [0..50]]; // G. C. Greubel, Oct 21 2018
-
LinearRecurrence[{-1, 56}, {1, 8}, 50] (* G. C. Greubel, Oct 21 2018 *)
CoefficientList[Series[-(1+9x)/(56x^2-x-1),{x,0,20}],x] (* Harvey P. Dale, Dec 20 2023 *)
-
vector(50, n, n--; (16*7^n-(-8)^n)/15) \\ G. C. Greubel, Oct 21 2018
A165510
a(0)=1, a(1)=9, a(n) = 72*a(n-2) - a(n-1).
Original entry on oeis.org
1, 9, 63, 585, 3951, 38169, 246303, 2501865, 15231951, 164902329, 931798143, 10941169545, 56148296751, 731615910489, 3311061455583, 49365284099625, 189031140702351, 3365269314470649, 10244972816098623, 232054417825788105
Offset: 0
-
[(18*8^n-(-9)^n)/17: n in [0..30]]; // G. C. Greubel, Oct 21 2018
-
LinearRecurrence[{-1,72},{1,9},30] (* Harvey P. Dale, Oct 15 2012 *)
-
vector(30, n, n--; (18*8^n-(-9)^n)/17) \\ G. C. Greubel, Oct 21 2018
Comments