cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 255 results. Next

A325248 Heinz number of the omega-sequence of n.

Original entry on oeis.org

1, 2, 2, 6, 2, 18, 2, 10, 6, 18, 2, 90, 2, 18, 18, 14, 2, 90, 2, 90, 18, 18, 2, 126, 6, 18, 10, 90, 2, 50, 2, 22, 18, 18, 18, 42, 2, 18, 18, 126, 2, 50, 2, 90, 90, 18, 2, 198, 6, 90, 18, 90, 2, 126, 18, 126, 18, 18, 2, 630, 2, 18, 90, 26, 18, 50, 2, 90, 18, 50
Offset: 1

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The omega-sequence of 180 is (5,3,2,2,1) with Heinz number 990, so a(180) = 990.
		

Crossrefs

Positions of squarefree terms are A325247.
Positions of normal numbers (A055932) are A325251.
First positions of each distinct term are A325238.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Table[Times@@Prime/@omseq[n],{n,100}]

Formula

A001222(a(n)) = A323014(n).
A061395(a(n)) = A001222(n).
A304465(n) = A055396(a(n)/2).
A325249(n) = A056239(a(n)).
a(n!) = A325275(n).

A367771 Number of ways to choose a different prime index of each prime index of 2n + 1.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 2, 1, 1, 3, 0, 2, 0, 0, 2, 1, 1, 2, 3, 1, 1, 2, 0, 2, 0, 1, 4, 1, 0, 1, 3, 0, 1, 1, 2, 3, 2, 0, 2, 2, 0, 1, 1, 1, 4, 2, 1, 3, 2, 0, 2, 3, 0, 3, 1, 1, 3, 0, 0, 2, 0, 1, 0, 1, 1, 5, 0, 0, 2, 2, 2, 2, 2, 0, 2, 4, 0, 1, 1, 0, 4, 2, 1, 2, 2, 0, 4
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of prime indices of 427 = 2*213 + 1 are {{1,1},{1,2,2}}, with four ways to choose (1,2), so a(213) = 4.
The prime indices of prime indices of 1469 = 2*734 + 1 are {{1,2},{1,2,3}}, with four choices (1,2), (1,3), (2,1), (2,3), so a(734) = 4.
		

Crossrefs

The "extended" version below includes alternating zeros at even positions.
Extended positions of zeros are A355529, binary A367907.
The extended version for binary indices is A367905.
Extended positions of nonzeros are A368100, binary A367906.
Extended positions of ones are A368101, binary A367908.
The extended version without distinctness is A355741, for multisets A355744.
A058891 counts set-systems, covering A003465, connected A323818.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[prix/@prix[2n+1]], UnsameQ@@#&]],{n,0,100}]

A336424 Number of factorizations of n where each factor belongs to A130091 (numbers with distinct prime multiplicities).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 5, 2, 1, 3, 3, 1, 1, 1, 7, 1, 1, 1, 6, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 9, 2, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 4, 1, 1, 3, 11, 1, 1, 1, 3, 1, 1, 1, 11, 1, 1, 3, 3, 1, 1, 1, 9, 5, 1, 1, 4, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(n) factorizations for n = 2, 4, 8, 60, 16, 36, 32, 48:
  2  4    8      5*12     16       4*9      32         48
     2*2  2*4    3*20     4*4      3*12     4*8        4*12
          2*2*2  3*4*5    2*8      3*3*4    2*16       3*16
                 2*2*3*5  2*2*4    2*18     2*4*4      3*4*4
                          2*2*2*2  2*2*9    2*2*8      2*24
                                   2*2*3*3  2*2*2*4    2*3*8
                                            2*2*2*2*2  2*2*12
                                                       2*2*3*4
                                                       2*2*2*2*3
		

Crossrefs

A327523 is the case when n is restricted to belong to A130091 also.
A001055 counts factorizations.
A007425 counts divisors of divisors.
A045778 counts strict factorizations.
A074206 counts ordered factorizations.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts nonempty chains of divisors.
A281116 counts factorizations with no common divisor.
A302696 lists numbers whose prime indices are pairwise coprime.
A305149 counts stable factorizations.
A320439 counts factorizations using A289509.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336500 counts divisors of n in A130091 with quotient also in A130091.
A336568 = not a product of two numbers with distinct prime multiplicities.
A336569 counts maximal chains of elements of A130091.
A337256 counts chains of divisors.

Programs

  • Mathematica
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Table[Length[facsusing[Select[Range[2,n],UnsameQ@@Last/@FactorInteger[#]&],n]],{n,100}]

A353834 Nonprime numbers whose prime indices have all equal run-sums.

Original entry on oeis.org

1, 4, 8, 9, 12, 16, 25, 27, 32, 40, 49, 63, 64, 81, 112, 121, 125, 128, 144, 169, 243, 256, 289, 325, 343, 351, 352, 361, 512, 529, 625, 675, 729, 832, 841, 931, 961, 1008, 1024, 1331, 1369, 1539, 1600, 1681, 1728, 1849, 2048, 2176, 2187, 2197, 2209, 2401
Offset: 1

Views

Author

Gus Wiseman, May 26 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).

Examples

			The terms together with their prime indices begin:
     1: {}
     4: {1,1}
     8: {1,1,1}
     9: {2,2}
    12: {1,1,2}
    16: {1,1,1,1}
    25: {3,3}
    27: {2,2,2}
    32: {1,1,1,1,1}
    40: {1,1,1,3}
    49: {4,4}
    63: {2,2,4}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
   112: {1,1,1,1,4}
   121: {5,5}
   125: {3,3,3}
   128: {1,1,1,1,1,1,1}
For example, 675 is in the sequence because its prime indices {2,2,2,3,3} have run-sums (6,6).
		

Crossrefs

For equal run-lengths we have A072774\A000040, counted by A047966(n)-1.
These partitions are counted by A304442(n) - 1.
These are the nonprime positions of prime powers in A353832.
Including the primes gives A353833.
For distinct run-sums we have A353838\A000040, counted by A353837(n)-1.
For compositions we have A353848\A000079, counted by A353851(n)-1.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion, distinct run-lengths A165413.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353840-A353846 pertain to partition run-sum trajectory.
A353862 gives greatest run-sum of prime indices, least A353931.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Select[Range[100],!PrimeQ[#]&&SameQ@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]&]
  • Python
    from itertools import count, islice
    from sympy import factorint, primepi
    def A353848_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: n == 1 or (sum((f:=factorint(n)).values()) > 1 and len(set(primepi(p)*e for p, e in f.items())) <= 1), count(max(startvalue,1)))
    A353848_list = list(islice(A353848_gen(),30)) # Chai Wah Wu, May 27 2022

A080257 Numbers having at least two distinct or a total of at least three prime factors.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 10 2003

Keywords

Comments

Complement of A000430; A080256(a(n)) > 3.
A084114(a(n)) > 0, see also A084110.
Also numbers greater than the square of their smallest prime-factor: a(n)>A020639(a(n))^2=A088377(a(n));
a(n)>A000430(k) for n<=13, a(n) < A000430(k) for n>13.
Numbers with at least 4 divisors. - Franklin T. Adams-Watters, Jul 28 2006
Union of A024619 and A033942; A211110(a(n)) > 2. - Reinhard Zumkeller, Apr 02 2012
Also numbers > 1 that are neither prime nor a square of a prime. Also numbers whose omega-sequence (A323023) has sum > 3. Numbers with omega-sequence summing to m are: A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7). - Gus Wiseman, Jul 03 2019
Numbers n such that sigma_2(n)*tau(n) = A001157(n)*A000005(n) >= 4*n^2. Note that sigma_2(n)*tau(n) >= sigma(n)^2 = A072861 for all n. - Joshua Zelinsky, Jan 23 2025

Examples

			8=2*2*2 and 10=2*5 are terms; 4=2*2 is not a term.
From _Gus Wiseman_, Jul 03 2019: (Start)
The sequence of terms together with their prime indices begins:
   6: {1,2}
   8: {1,1,1}
  10: {1,3}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  18: {1,2,2}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  24: {1,1,1,2}
  26: {1,6}
  27: {2,2,2}
  28: {1,1,4}
  30: {1,2,3}
  32: {1,1,1,1,1}
(End)
		

Crossrefs

Programs

  • Haskell
    a080257 n = a080257_list !! (n-1)
    a080257_list = m a024619_list a033942_list where
       m xs'@(x:xs) ys'@(y:ys) | x < y  = x : m xs ys'
                               | x == y = x : m xs ys
                               | x > y  = y : m xs' ys
    -- Reinhard Zumkeller, Apr 02 2012
    
  • Mathematica
    Select[Range[100],PrimeNu[#]>1||PrimeOmega[#]>2&] (* Harvey P. Dale, Jul 23 2013 *)
  • PARI
    is(n)=omega(n)>1 || isprimepower(n)>2
    
  • PARI
    is(n)=my(k=isprimepower(n)); if(k, k>2, !isprime(n)) \\ Charles R Greathouse IV, Jan 23 2025

Formula

a(n) = n + O(n/log n). - Charles R Greathouse IV, Sep 14 2015

Extensions

Definition clarified by Harvey P. Dale, Jul 23 2013

A325131 Heinz numbers of integer partitions where the set of distinct parts is disjoint from the set of distinct multiplicities.

Original entry on oeis.org

1, 3, 4, 5, 7, 8, 11, 13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 64, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 100, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 127
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A114639.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers where the prime indices are disjoint from the prime exponents.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
  11: {5}
  13: {6}
  15: {2,3}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  32: {1,1,1,1,1}
  33: {2,5}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Intersection[PrimePi/@First/@FactorInteger[#],Last/@FactorInteger[#]]=={}&]

A333175 If n = Product (p_j^k_j) then a(n) = Sum (a(n/p_j^k_j)), with a(1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 6, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 6, 1, 2, 2, 1, 2, 6, 1, 2, 2, 6, 1, 2, 1, 2, 2, 2, 2, 6, 1, 2, 1, 2, 1, 6, 2, 2, 2, 2, 1, 6, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 11 2020

Keywords

Comments

Number of ordered prime factorizations of radical of n.
Number of permutations of the prime indices of n (counting multiplicity) avoiding the patterns (1,2,1) and (2,1,2). These are permutations with all equal parts contiguous. Depends only on sorted prime signature (A118914). - Gus Wiseman, Jun 27 2020

Examples

			From _Gus Wiseman_, Jun 27 2020 (Start)
The a(n) permutations of prime indices for n = 2, 12, 60:
  (1)  (112)  (1123)
       (211)  (1132)
              (2113)
              (2311)
              (3112)
              (3211)
(End)
		

Crossrefs

Dominates A335451.
Permutations of prime indices are A008480.
Unsorted prime signature is A124010. Sorted prime signature is A118914.
(1,2,1)-avoiding permutations of prime indices are A335449.
(2,1,2)-avoiding permutations of prime indices are A335450.
(1,2,1) or (2,1,2)-matching permutations of prime indices are A335460.
(1,2,1) and (2,1,2)-matching permutations of prime indices are A335462.

Programs

  • Maple
    f:= n -> nops(numtheory:-factorset(n))!:
    map(f, [$1..100]); # Robert Israel, Mar 12 2020
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Plus @@ (a[n/#[[1]]^#[[2]]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 100}]
    a[1] = 1; a[n_] := a[n] = Sum[If[GCD[n/d, d] == 1 && d < n, Boole[PrimePowerQ[n/d]] a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 100}]
    Table[PrimeNu[n]!, {n, 1, 100}]

Formula

a(1) = 1; a(n) = Sum_{d|n, d < n, gcd(d, n/d) = 1} A069513(n/d) * a(d).
a(n) = A000142(A001221(n)).

A336414 Number of divisors of n! with distinct prime multiplicities.

Original entry on oeis.org

1, 1, 2, 3, 7, 10, 20, 27, 48, 86, 147, 195, 311, 390, 595, 1031, 1459, 1791, 2637, 3134, 4747, 7312, 10766, 12633, 16785, 26377, 36142, 48931, 71144, 82591, 112308, 128023, 155523, 231049, 304326, 459203, 568095, 642446, 812245, 1137063, 1441067, 1612998, 2193307, 2429362
Offset: 0

Views

Author

Gus Wiseman, Jul 22 2020

Keywords

Comments

A number has distinct prime multiplicities iff its prime signature is strict.

Examples

			The first and second columns below are the a(6) = 20 counted divisors of 6! together with their prime signatures. The third column shows the A000005(6!) - a(6) = 10 remaining divisors.
      1: ()      20: (2,1)    |    6: (1,1)
      2: (1)     24: (3,1)    |   10: (1,1)
      3: (1)     40: (3,1)    |   15: (1,1)
      4: (2)     45: (2,1)    |   30: (1,1,1)
      5: (1)     48: (4,1)    |   36: (2,2)
      8: (3)     72: (3,2)    |   60: (2,1,1)
      9: (2)     80: (4,1)    |   90: (1,2,1)
     12: (2,1)  144: (4,2)    |  120: (3,1,1)
     16: (4)    360: (3,2,1)  |  180: (2,2,1)
     18: (1,2)  720: (4,2,1)  |  240: (4,1,1)
		

Crossrefs

Perfect-powers are A001597, with complement A007916.
Numbers with distinct prime multiplicities are A130091.
Divisors with distinct prime multiplicities are counted by A181796.
The maximum divisor with distinct prime multiplicities is A327498.
Divisors of n! with equal prime multiplicities are counted by A336415.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n!],UnsameQ@@Last/@FactorInteger[#]&]],{n,0,15}]
  • PARI
    a(n) = sumdiv(n!, d, my(ex=factor(d)[,2]); #vecsort(ex,,8) == #ex); \\ Michel Marcus, Jul 24 2020

Formula

a(n) = A181796(n!).

Extensions

a(21)-a(41) from Alois P. Heinz, Jul 24 2020

A360013 Numbers whose exponent of 2 in their canonical prime factorization is larger than all the other exponents.

Original entry on oeis.org

2, 4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 104, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 184, 188, 192, 200, 204, 208, 212, 220, 224, 228, 232, 236, 240, 244, 248, 256
Offset: 1

Views

Author

Amiram Eldar, Jan 21 2023

Keywords

Comments

Numbers k such that A007814(k) > A051903(A000265(k)).
The powers of 2 (A000079), except for 1, are all terms.
The product of any two terms (not necessarily distinct) is also a term.
This sequence is a disjoint union of {2} and the subsequences of numbers m of the form 2^k*o where o = A000265(m), the odd part of m, is a k-free number, for k >= 2. These subsequences include, for k = 2, numbers of the form 4*o where o is an odd squarefree number (A056911); for k = 3, numbers of the form 8*o where o is an odd cubefree number; etc.
The asymptotic density of this sequence is Sum_{k>=2} 1/(zeta(k)*2*(2^k-1)) = 0.222707226888193809... .
The asymptotic mean of the exponent of 2 in the prime factorization of the terms of this sequence is Sum_{k>=2} k/(zeta(k)*2*(2^k-1)) / Sum_{k>=2} 1/(zeta(k)*2*(2^k-1)) = 3.10346728882748723133... . [corrected by Amiram Eldar, Jul 10 2025]
This sequence is a subsequence of A360015 and the asymptotic density of this sequence within A360015 is exactly 1/2.
Also even numbers whose multiset of prime factors has unique mode 2. - Gus Wiseman, Jul 10 2023

Examples

			From _Gus Wiseman_, Jul 09 2023: (Start)
108 = 2*2*3*3*3 is missing because its mode is not 2.
180 = 2*2*3*3*5 is missing because 2 is not the unique mode.
120 = 2*2*2*3*5 is present because its unique mode is 2.
The terms together with their prime factorizations begin:
   2 = 2
   4 = 2*2
   8 = 2*2*2
  12 = 2*2*3
  16 = 2*2*2*2
  20 = 2*2*5
  24 = 2*2*2*3
  28 = 2*2*7
  32 = 2*2*2*2*2
  40 = 2*2*2*5
  44 = 2*2*11
  48 = 2*2*2*2*3
  52 = 2*2*13
  56 = 2*2*2*7
  60 = 2*2*3*5
  64 = 2*2*2*2*2*2
(End)
		

Crossrefs

Equals A360015 \ A360014.
Partitions of this type are counted by A241131.
Allowing any unique mode gives A356862, complement A362605.
Allowing any unique co-mode gives A359178, complement A362606.
Not requiring the mode to be unique gives A360015.
The opposite version is A362616, counted by A362612.
For co-mode instead of mode we have A364061, counted by A364062.
With least prime factor instead of 2, we have A364160, counted by A364193.
With a different factorization, we have the subsequence A335738.
A124010 gives prime signature, ordered A118914.
A362611 counts modes in prime factorization, triangle A362614.
A362613 counts co-modes in prime factorization, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.

Programs

  • Mathematica
    q[n_] := Module[{e = IntegerExponent[n, 2], m}, m = n/2^e; (m == 1 && e > 0) || AllTrue[FactorInteger[m][[;; , 2]], # < e &]]; Select[Range[256], q]
  • PARI
    is(n) = {my(e = valuation(n, 2), m = n >> e); (m == 1 && e > 0) || (m > 1 && vecmax(factor(m)[,2]) < e)};

Formula

a(n) = 2*A360015(n). - Gus Wiseman, Jul 10 2023

A329131 Numbers whose prime signature is a Lyndon word.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 18, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 50, 53, 54, 59, 61, 64, 67, 71, 73, 75, 79, 81, 83, 89, 97, 98, 101, 103, 107, 108, 109, 113, 121, 125, 127, 128, 131, 137, 139, 147, 149, 150, 151, 157, 162, 163, 167
Offset: 1

Views

Author

Gus Wiseman, Nov 06 2019

Keywords

Comments

First differs from A133811 in having 50.
A Lyndon word is a finite sequence that is lexicographically strictly less than all of its cyclic rotations.
A number's prime signature is the sequence of positive exponents in its prime factorization.

Examples

			The prime signature of 30870 is (1,2,1,3), which is a Lyndon word, so 30870 is in the sequence.
The sequence of terms together with their prime indices begins:
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   18: {1,2,2}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
		

Crossrefs

Numbers whose reversed binary expansion is Lyndon are A328596.
Numbers whose prime signature is a necklace are A329138.
Numbers whose prime signature is aperiodic are A329139.
Lyndon compositions are A059966.
Prime signature is A124010.

Programs

  • Mathematica
    lynQ[q_]:=Array[Union[{q,RotateRight[q,#]}]=={q,RotateRight[q,#]}&,Length[q]-1,1,And];
    Select[Range[2,100],lynQ[Last/@FactorInteger[#]]&]

Formula

Intersection of A329138 and A329139.
Previous Showing 31-40 of 255 results. Next