A098665
a(n) = Sum_{k = 0..n} binomial(n,k) * binomial(n+1,k+1) * 4^k.
Original entry on oeis.org
1, 6, 43, 332, 2661, 21810, 181455, 1526040, 12939145, 110413406, 947052723, 8157680228, 70518067309, 611426078346, 5315138311383, 46308989294640, 404274406256145, 3535479068797110, 30966952059306555, 271616893912241532, 2385412594943633781, 20973327081776664546
Offset: 0
-
Table[SeriesCoefficient[((1+3*x)-Sqrt[1-10*x+9*x^2])/(8*x*Sqrt[1-10*x+9*x^2]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2012 *)
a[n_] := 4^n*HypergeometricPFQ[{-n, -n - 1}, {1}, 1/4]; Flatten[Table[a[n], {n,0,21}]] (* Detlef Meya, May 21 2024 *)
-
my(x='x+O('x^66)); Vec(((1+3*x)-sqrt(1-10*x+9*x^2))/(8*x*sqrt(1-10*x+9*x^2))) \\ Joerg Arndt, May 12 2013
A333565
O.g.f.: (1 + 4*x)/((1 + x)*sqrt(1 - 8*x)).
Original entry on oeis.org
1, 7, 33, 223, 1537, 11007, 80385, 595455, 4456449, 33615871, 255148033, 1946337279, 14908784641, 114597822463, 883479412737, 6828492980223, 52895475040257, 410544577183743, 3191929428770817, 24855137310736383, 193811815161921537, 1513167009951514623, 11827298001565515777
Offset: 0
Examples of congruences:
a(11) - a(1) = 1946337279 - 7 = (2^3)*(11^3)*182789 == 0 ( mod 11^3 ).
a(2*11) - a(2) = 11827298001565515777 - 33 = (2^5)*(3^2)*(11^3)*107* 288357478039 == 0 ( mod 11^3 ).
a(5^2) - a(5) = 5680983691406772011007 - 11007 = (2^8)*(3^3)*(5^6)*7* 19*1123*352183001 == 0 ( mod 5^6 ).
- R. P. Stanley. Enumerative combinatorics. Vol. 2, (volume 62 of Cambridge Studies in Advanced Mathematics). Cambridge University Press, Cambridge, 1999.
-
a := proc (n) option remember; `if`(n = 0, 1, `if`(n = 1, 7, `if`(n = 2, 33, ((3*n+4)*a(n-1)+(36*n-76)*a(n-2)+(32*n-80)*a(n-3))/n)))
end proc:
seq(a(n), n = 0..25);
-
a[n_] := (-1)^n - 2^(n+2) Binomial[2n, n-1] Hypergeometric2F1[1, 2n +1, n + 2, 2];
Table[Simplify[a[n]], {n, 0, 22}] (* Peter Luschny, Apr 13 2020 *)
CoefficientList[Series[(1+4x)/((1+x)Sqrt[1-8x]),{x,0,30}],x] (* Harvey P. Dale, Jan 24 2021 *)
A333560
Square array read by antidiagonals: T(n,k) = Sum_{j = 0..n*k} binomial(n+j-1,j)*2^j; n,k >= 0.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 17, 7, 1, 1, 111, 129, 15, 1, 1, 769, 2815, 769, 31, 1, 1, 5503, 65537, 47103, 4097, 63, 1, 1, 40193, 1579007, 3080193, 647167, 20481, 127, 1, 1, 297727, 38862849, 208470015, 109051905, 7929855, 98305, 255, 1, 1, 2228225, 970522623, 14413725697, 19012780031, 3271557121, 90177535, 458753, 511, 1
Offset: 0
Square array begins
|k=0 k=1 k=2 k=3 k=4
- - - - - - - - - - - - - - - - - - - - - - - - - - - -
n=0 | 1 1 1 1 1
n=1 | 1 3 7 15 31
n=2 | 1 17 129 769 4097
n=3 | 1 111 2815 47103 647167
n=4 | 1 769 65537 3080193 109051905
n=5 | 1 5503 1579007 208470015 19012780031
n=6 | 1 40193 38862849 14413725697 3385776406529
n=7 | 1 297727 970522623 1011196362751 611732191969279
...
Examples of congruences for column k = 1:
T(5,1) - T(1,1) = 5503 - 3 = (2^2)*(5^3)*11 == 0 ( mod 5^3 ).
T(7,1) - T(1,1) = 297727 - 3 = (2^2)*(7^4)*31 == 0 ( mod 7^3 ).
T(2*11,1) - T(2,1) = 5913649000782757889 - 17 = (2^4)*(3^2)*(11^3)*107*288357478039 == 0 ( mod 11^3 ).
T(5^2,1) - T(5,1) = 2840491845703386005503 - 5503 = (2^7)*(3^3)*(5^6)*7*19*1123*352183001 == 0 ( mod 5^6 ).
-
T := (n, k) -> add(binomial(n+j-1, j)*2^j, j = 0..n*k):
T_col := k -> seq(T(n, k), n = 0..7):
seq(print(T_col(k)), k = 0..10);
A333561
a(n) = Sum_{j = 0..2*n} binomial(n+j-1,j)*2^j.
Original entry on oeis.org
1, 7, 129, 2815, 65537, 1579007, 38862849, 970522623, 24494735361, 623210135551, 15956734640129, 410649406472191, 10612705274626049, 275241225206890495, 7159857331658817537, 186731505521384226815, 4880983719142471237633, 127836403093194475044863
Offset: 0
Examples of supercongruences:
a(11) - a(1) = 410649406472191 - 7 = (2^3)*3*(11^3)*12855290711 == 0 ( mod 11^3 ).
a(3*7) - a(3) = 61103847305642669128888090623 - 2815 = (2^8)*(7^5)* 87326419*162627033103121 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 29754989698128108780761000609579007 - 1579007 = (2^11)*(5^6)*179*751*10267*673710468794491483 == 0 ( mod 5^6 ).
-
seq(add( binomial(n+j-1,j)*2^j, j = 0..2*n), n = 0..25);
-
Table[(-1)^n - 2^(2*n+1) * Binomial[3*n, 2*n+1] * Hypergeometric2F1[1, 3*n+1, 2*n+2, 2], {n, 0, 20}] (* Vaclav Kotesovec, Mar 28 2020 *)
-
a(n) = sum(j = 0, 2*n, binomial(n+j-1,j)*2^j); \\ Michel Marcus, Mar 28 2020
A333562
a(n) = Sum_{j = 0..3*n} binomial(n+j-1,j)*2^j.
Original entry on oeis.org
1, 15, 769, 47103, 3080193, 208470015, 14413725697, 1011196362751, 71695889072129, 5124481173422079, 368599603785760769, 26648859989512290303, 1934777421539431153665, 140966705275001764839423, 10301634747725237826093057, 754776795329691207916847103
Offset: 0
Examples of congruences:
a(11) - a(1) = 26648859989512290303 - 15 = (2^4)*3*(11^3)*417118394526551 == 0 ( mod 11^3 ).
a(3*7) - a(3) = 121414496850169263529624169428526563327 - 47103 = (2^11)*(7^4)*24691554473186884926207539141513 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 3682696038139661781421472944275523824848470015 - 208470015 = (2^16)*(5^7)*71*1315737187*37481160881*205425986821331 == 0 ( mod 5^6 ).
-
seq(add( binomial(n+j-1,j)*2^j, j = 0..3*n), n = 0..25);
-
Table[(-1)^n - 2^(3*n+1) * Binomial[4*n, 3*n+1] * Hypergeometric2F1[1, 4*n+1, 3*n+2, 2], {n, 0, 15}] (* Vaclav Kotesovec, Mar 28 2020 *)
-
a(n) = sum(j = 0, 3*n, binomial(n+j-1,j)*2^j); \\ Michel Marcus, Mar 28 2020
A259557
a(n) = binomial(4*n-1, 2*n).
Original entry on oeis.org
1, 3, 35, 462, 6435, 92378, 1352078, 20058300, 300540195, 4537567650, 68923264410, 1052049481860, 16123801841550, 247959266474052, 3824345300380220, 59132290782430712, 916312070471295267, 14226520737620288370
Offset: 0
-
[Binomial(4*n-1, 2*n): n in [0..20]]; // Vincenzo Librandi, Jul 01 2015
-
Table[Binomial[4 n - 1, 2 n], {n, 0, 30}] (* Vincenzo Librandi, Jul 01 2015 *)
-
vector(20, n, n--; binomial(4*n-1, 2*n)) \\ Michel Marcus, Jul 01 2015
A207327
Riordan array (1, x*(1+x)^2/(1-x)).
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 4, 6, 1, 0, 4, 17, 9, 1, 0, 4, 32, 39, 12, 1, 0, 4, 48, 111, 70, 15, 1, 0, 4, 64, 240, 268, 110, 18, 1, 0, 4, 80, 432, 769, 530, 159, 21, 1, 0, 4, 96, 688, 1792, 1905, 924, 217, 24, 1, 0, 4
Offset: 0
Triangle begins :
1
0, 1
0, 3, 1
0, 4, 6, 1
0, 4, 17, 9, 1
0, 4, 32, 39, 12, 1
0, 4, 48, 111, 70, 15, 1
0, 4, 64, 240, 268, 110, 18, 1
0, 4, 80, 432, 769, 530, 159, 21, 1
0, 4, 96, 688, 1792, 1905, 924, 217, 24, 1
0, 4, 112, 1008, 3584, 5503, 3999, 1477, 284, 27, 1
0, 4, 128, 1392, 6400, 13440, 13842, 7483, 2216, 360, 30, 1
Comments