cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A364900 The n-volume of the unit regular n-simplex is sqrt(a(n))/A364901(n), with a(n) being squarefree.

Original entry on oeis.org

1, 1, 3, 2, 5, 3, 7, 1, 1, 5, 11, 6, 13, 7, 15, 2, 17, 1, 19, 10, 21, 11, 23, 3, 1, 13, 3, 14, 29, 15, 31, 1, 33, 17, 35, 2, 37, 19, 39, 5, 41, 21, 43, 22, 5, 23, 47, 6, 1, 1, 51, 26, 53, 3, 55, 7, 57, 29, 59, 30, 61, 31, 7, 2, 65, 33, 67, 34, 69, 35, 71, 1, 73, 37, 3
Offset: 0

Views

Author

Jianing Song, Aug 12 2023

Keywords

Comments

a(n) = 1 if and only if n = 2*k^2 - 1 or n = 4*k^2 - 4*k for k >= 1.
a(n) = a(n+1) = 1 if and only if n = A001333(k)^2 - 2 for even k and A001333(k)^2 - 1 for odd k.

Examples

			  n |  the n-volume of the
    | unit regular n-simplex
  2 |  sqrt(3)/4 = A120011
  3 |  sqrt(2)/12 = A020829
  4 |  sqrt(5)/96 = A364895
  5 |  sqrt(3)/480
  6 |  sqrt(7)/5760
  7 |        1/20160
  8 |        1/215040
  9 |  sqrt(5)/5806080
		

Crossrefs

Programs

  • PARI
    a(n) = if(n%2, core((n+1)/2), core(n+1))

Formula

The n-volume of the unit regular n-simplex is sqrt(n+1)/(n!*2^(n/2)), so a(n) = A007913(n+1) for even n and A007913((n+1)/2) for odd n.

A364901 The n-volume of the unit regular n-simplex is sqrt(A364900(n))/a(n), with A364900(n) being squarefree.

Original entry on oeis.org

1, 1, 4, 12, 96, 480, 5760, 20160, 215040, 5806080, 116121600, 1277337600, 30656102400, 398529331200, 11158821273600, 83691159552000, 5356234211328000, 30351993864192000, 3278015337332736000, 62282291409321984000, 2491291656372879360000, 52317124783830466560000
Offset: 0

Views

Author

Jianing Song, Aug 12 2023

Keywords

Examples

			  n |  the n-volume of the
    | unit regular n-simplex
  2 |  sqrt(3)/4 = A120011
  3 |  sqrt(2)/12 = A020829
  4 |  sqrt(5)/96 = A364895
  5 |  sqrt(3)/480
  6 |  sqrt(7)/5760
  7 |        1/20160
  8 |        1/215040
  9 |  sqrt(5)/5806080
		

Crossrefs

Programs

  • PARI
    A000188(n) = sqrtint(n/core(n));
    a(n) = n! * if(n%2, 2^((n-1)/2)/A000188((n+1)/2), 2^(n/2)/A000188(n+1))

Formula

The n-volume of the unit regular n-simplex is sqrt(n+1)/(n!*2^(n/2)), so a(n) = n! * 2^(n/2) / A000188(n+1) for even n and n! * 2^((n-1)/2) / A000188((n+1)/2) for odd n. It's easy to see that a(n) is an integer.

A179048 Decimal expansion of 25*sqrt(3)/4, the area of the equilateral triangle of side 5.

Original entry on oeis.org

1, 0, 8, 2, 5, 3, 1, 7, 5, 4, 7, 3, 0, 5, 4, 8, 3, 0, 8, 4, 5, 4, 6, 5, 3, 9, 6, 3, 4, 4, 1, 1, 7, 0, 2, 2, 9, 3, 3, 9, 2, 5, 3, 2, 8, 3, 6, 3, 1, 4, 8, 7, 8, 9, 2, 5, 3, 4, 8, 7, 9, 3, 6, 2, 1, 5, 7, 4, 5, 8, 1, 3, 5, 5, 6, 8, 0, 0, 0, 0, 2, 3, 1, 7, 5, 7, 1, 6, 3, 6, 6, 7, 2, 3, 2, 8, 0, 3, 5, 9, 7, 9, 7, 2, 6
Offset: 2

Views

Author

Keywords

Examples

			10.825317547305483084546539634411702293392532836314878925348793621574581355680..
		

Crossrefs

Programs

  • Mathematica
    a=b=c=5;area=Sqrt[(a+b-c)*(a-b+c)*(-a+b+c)*(a+b+c)]/4;RealDigits[N[area,200]]
    RealDigits[(25*Sqrt[3])/4,10,120][[1]] (* Harvey P. Dale, May 30 2018 *)
  • PARI
    25*sqrt(3)/4 \\ Charles R Greathouse IV, Jun 30 2011

Formula

Equals 25*A002194/4.

Extensions

Offset corrected, keyword:cons inserted - R. J. Mathar, Jun 28 2010

A179275 Decimal expansion of 2*sqrt(Pi)/3^(1/4).

Original entry on oeis.org

2, 6, 9, 3, 5, 4, 7, 3, 7, 4, 1, 7, 7, 1, 9, 6, 7, 2, 1, 2, 3, 8, 1, 6, 0, 4, 7, 5, 0, 9, 2, 3, 2, 8, 6, 6, 7, 0, 8, 8, 6, 7, 0, 8, 0, 7, 3, 0, 8, 0, 1, 5, 8, 9, 2, 3, 9, 9, 2, 0, 6, 6, 4, 5, 4, 9, 5, 1, 9, 1, 6, 0, 7, 3, 0, 5, 1, 8, 2, 0, 1, 2, 8, 0, 3, 3, 1, 3, 2, 6, 0, 1, 2, 3, 1, 0, 3, 8, 4, 6, 1, 5, 4, 5, 8
Offset: 1

Views

Author

Rick L. Shepherd, Jul 07 2010

Keywords

Comments

Also the side length of an equilateral triangle with area Pi (A000796), the area of a unit circle.
The area of an equilateral triangle with side length s is (sqrt(3)/4)s^2 = A120011*s^2, so A120011*(this constant)^2 = A000796.

Examples

			2.693547374177196721238160475092328667088670807308015892399206645495191607305...
		

Crossrefs

Cf. A002161 (sqrt(Pi)), A011002 (3^1/4), A000796 (Pi), A002194 (sqrt(3)), A120011 (sqrt(3)/4).

Programs

  • Mathematica
    RealDigits[2*Sqrt[Pi]/3^(1/4), 10, 100][[1]] (* G. C. Greubel, Mar 24 2017 *)
  • PARI
    2*sqrt(Pi)/3^(1/4)

Formula

2*sqrt(Pi)/3^(1/4) = 2*A002161/A011002.

A194082 Sum{floor(sqrt(3)*k/2) : 1<=k<=n}.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 27, 34, 42, 51, 61, 72, 84, 96, 109, 123, 138, 154, 171, 189, 208, 227, 247, 268, 290, 313, 337, 362, 387, 413, 440, 468, 497, 527, 558, 590, 622, 655, 689, 724, 760, 797, 835, 873, 912, 952, 993, 1035, 1078, 1122, 1167, 1212
Offset: 1

Views

Author

Clark Kimberling, Aug 17 2011

Keywords

Comments

Partial sums of A171970.
Comment from R. J. Mathar, Dec 02 2012 (Start):
a(n-1) is the number of unit squares regularly packed into the isosceles triangle of edge length n.
The triangle may be aligned with the Cartesian axes by putting its bottom edge on the horizontal axis, so its vertices are at (x,y) = (0,0), (n,0) and (n/2,sqrt(3)*n/2), see A010527.
The area inside the triangle is sqrt(3)*n^2/4 = A120011*n^2. There is an obvious upper limit of floor(sqrt(3)*n^2/4) = A171971(n) to the count of non-overlapping unit squares inside this triangle.
Regular packing: We place the first row of unit squares so they touch the bottom edge of the triangle. Their number is limited by the length of the horizontal section of the line y=1 inside the triangle, n-2*y/sqrt(3), which touches all of these first-row squares at their top.
The number of unit squares in the next row, between y=1 and y=2, is limited by the length of the horizontal section of the line y=2 inside the triangle, n-2*y/sqrt(3). Continuing, in row y=1, 2, ... we insert floor(n-2*y/sqrt(3)) unit squares, all with the same orientation.
The total number of squares is sum_{ y=1, 2, ..., floor(n*sqrt(3)/2) } floor( n-2*y/sqrt(3) ), and resummation yields, up to an index shift, this sequence here.
(End)

Crossrefs

Cf. A171970.

Programs

  • Mathematica
    r = Sqrt[3]/2;
    c[k_] := Sum[Floor[j*r], {j, 1, k}];
    Table[c[k], {k, 1, 90}]
  • PARI
    a(n)=sum(k=1,n,sqrtint(3*k^2\4)) \\ Charles R Greathouse IV, Jan 06 2013

A358981 Decimal expansion of Pi/3 - sqrt(3)/4.

Original entry on oeis.org

6, 1, 4, 1, 8, 4, 8, 4, 9, 3, 0, 4, 3, 7, 8, 4, 2, 2, 7, 7, 2, 3, 5, 2, 8, 7, 5, 7, 1, 6, 6, 9, 9, 5, 3, 6, 3, 3, 0, 0, 2, 1, 8, 1, 9, 6, 7, 2, 4, 4, 0, 1, 1, 6, 6, 4, 4, 3, 6, 3, 1, 1, 9, 2, 3, 9, 6, 2, 2, 2, 1, 4, 5, 3, 4, 8, 6, 9, 6, 5, 6, 9, 3, 9, 0, 5, 8, 3, 9, 5, 0, 9, 1, 3, 9, 3, 5, 4, 5, 4
Offset: 0

Views

Author

Michal Paulovic, Dec 08 2022

Keywords

Comments

The constant is the area of a circular segment bounded by an arc of 2*Pi/3 radians (120 degrees) of a unit circle and by a chord of length sqrt(3). Three such segments result when an equilateral triangle with side length sqrt(3) is circumscribed by a unit circle. The area of each segment is:
A = (R^2 / 2) * (theta - sin(theta))
A = (1^2 / 2) * (2*Pi/3 - sin(2*Pi/3))
A = (1 / 2) * (2*Pi/3 - sqrt(3)/2)
A = Pi/3 - sqrt(3)/4 = (Pi - 3*sqrt(3)/4) / 3 = 0.61418484...
where Pi (A000796) is the area of the circle, and 3*sqrt(3)/4 (A104954) is the area of the inscribed equilateral triangle.
The sagitta (height) of the circular segment is:
h = R * (1 - cos(theta/2))
h = 1 * (1 - cos(Pi/3))
h = 1 - 1/2 = 0.5 (A020761)

Examples

			0.6141848493043784...
		

Crossrefs

Programs

  • Maple
    evalf(Pi/3-sqrt(3)/4);
  • Mathematica
    RealDigits[Pi/3 - Sqrt[3]/4, 10, 100][[1]]
  • PARI
    Pi/3 - sqrt(3)/4

Formula

Equals A019670 - A120011. - Omar E. Pol, Dec 08 2022
Equals A093731 / 2. - Michal Paulovic, Mar 08 2024

A387189 Decimal expansion of the smallest dihedral angle, in radians, in a pentagonal bipyramid (Johnson solid J_13).

Original entry on oeis.org

1, 3, 0, 4, 7, 1, 6, 2, 7, 9, 5, 6, 8, 7, 3, 6, 3, 7, 1, 9, 9, 0, 7, 8, 1, 2, 6, 3, 2, 8, 7, 6, 4, 5, 1, 4, 8, 7, 3, 0, 6, 1, 5, 8, 3, 9, 9, 2, 5, 9, 5, 9, 4, 8, 3, 5, 8, 9, 4, 5, 5, 8, 9, 3, 4, 1, 2, 2, 8, 7, 1, 6, 7, 6, 4, 2, 0, 7, 9, 0, 6, 5, 8, 1, 9, 1, 3, 4, 2, 8
Offset: 1

Views

Author

Paolo Xausa, Aug 21 2025

Keywords

Comments

This is the dihedral angle between triangular faces at the edge where the two pyramidal parts of the solid meet.
Also the dihedral angle between triangular faces in a pentagonal orthobicupola (Johnson solid J_30).

Examples

			1.3047162795687363719907812632876451487306158399...
		

Crossrefs

Cf. A236367 (J_13 smallest dihedral angle).
Cf. other J_30 dihedral angles: A105199, A377995, A377996.
Cf. A179641 (J_13 volume), A120011 (J_13 surface area, divided by 10).
Cf. A384624 (J_30 volume), A384625 (J_30 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcCos[(Sqrt[80] - 5)/15], 10, 100]] (* or *)
    First[RealDigits[Min[PolyhedronData["J13", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos((4*sqrt(5) - 5)/15) = arccos((A010532 - 5)/15).
Equals 2*A386852.

A372047 Decimal expansion of sqrt(3)*Gamma(1/3)/4.

Original entry on oeis.org

1, 1, 6, 0, 0, 1, 4, 4, 1, 3, 1, 1, 6, 9, 8, 4, 7, 7, 5, 2, 9, 4, 1, 5, 2, 4, 1, 6, 9, 4, 2, 8, 2, 6, 0, 1, 1, 3, 8, 7, 2, 1, 0, 2, 7, 0, 8, 3, 6, 3, 2, 3, 5, 0, 8, 9, 9, 3, 0, 4, 7, 9, 3, 3, 2, 0, 9, 4, 6, 4, 8, 5, 6, 7, 4, 1, 7, 4, 0, 9, 6, 9, 9, 7, 5, 5, 7, 9, 7, 4, 3, 6, 3, 9, 9, 9
Offset: 1

Views

Author

R. J. Mathar, May 22 2024

Keywords

Examples

			1.160014413116984775294152416942826...
		

Crossrefs

Programs

  • Maple
    sqrt(3)/4*GAMMA(1/3) ; evalf(%) ;
  • Mathematica
    RealDigits[Sqrt[3] * Gamma[1/3]/4, 10, 120][[1]] (* Amiram Eldar, Jun 10 2024 *)
  • PARI
    sqrt(3) * gamma(1/3) / 4 \\ Amiram Eldar, Jun 10 2024

Formula

Equals Integral_{x=0..oo} sin(x^3)/x^3 dx = A120011 * A073005.

A373732 a(n) = floor(4*n^2/sqrt(3)).

Original entry on oeis.org

0, 2, 9, 20, 36, 57, 83, 113, 147, 187, 230, 279, 332, 390, 452, 519, 591, 667, 748, 833, 923, 1018, 1117, 1221, 1330, 1443, 1561, 1683, 1810, 1942, 2078, 2219, 2364, 2514, 2669, 2829, 2992, 3161, 3334, 3512, 3695, 3882, 4073, 4270, 4471, 4676, 4886, 5101, 5320, 5544, 5773
Offset: 0

Views

Author

A. Timothy Royappa, Jun 17 2024

Keywords

Comments

Maximum number of equilateral triangles with unit side, possibly cut into pieces, that can fit into a square of side n without overlapping.
The area of an equilateral triangle with unit side is sqrt(3)/4 (A120011), which gives the number a(n) of such triangles in a square of side n as at most floor(n^2/(sqrt(3)/4)).

Examples

			At most 9 unit equilateral triangles can fit into a square of side 2, so a(2) = 9.
		

Crossrefs

Cf. A120011.

Formula

a(n) = floor(4*n^2/sqrt(3)).

A379339 Decimal expansion of Pi/8 + sqrt(3)/4.

Original entry on oeis.org

8, 2, 5, 7, 1, 1, 7, 8, 3, 5, 9, 0, 9, 4, 3, 4, 7, 8, 1, 8, 9, 6, 9, 2, 0, 0, 8, 2, 8, 6, 4, 0, 5, 9, 5, 2, 2, 6, 0, 3, 4, 7, 4, 8, 8, 3, 7, 4, 4, 8, 3, 3, 8, 4, 6, 3, 5, 8, 1, 9, 8, 1, 8, 9, 0, 1, 4, 6, 0, 3, 0, 5, 0, 1, 2, 9, 7, 6, 1, 3, 4, 0, 9, 8, 7, 9, 0, 8, 9, 9, 8, 5, 7, 0, 7, 6, 7, 7, 7, 4
Offset: 0

Views

Author

Stefano Spezia, Dec 21 2024

Keywords

Examples

			0.82571178359094347818969200828640595226034748837448...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.3, p. 489.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi/8+Sqrt[3]/4,10,100][[1]]
Previous Showing 21-30 of 30 results.